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ABSTRACT: This paper deals with the problem of fault detection and isolation for discrete time-
varying systems with stochastic and bounded uncertainties, and in presence of noises in the plant and 
sensors. Faults can occur simultaneously or sequentially, so the designed filter has the ability to detect 
and isolate these faults, and handle the challenges posed by uncertainty and the effects of noises. In 
solving the problem of fault diagnosis, fault detection and isolation filter based on the robust Kalman 
filter are presented. For this purpose, a time-varying threshold is defined based on the upper bound of 
covariance of the residuals. This threshold helps in better performance and prevents misdiagnosis. In 
the design of the fault detector, due to the number of outputs, fault detectors are designed. Moreover, by 
examining the residuals of the system, some conditions are obtained, which, by applying these conditions, 
a robust fault isolator is achieved. Finally, using three examples, the efficiency and performance of the 
proposed method are shown. In the first example, the performance of the proposed method is studied 
in the presence of uncertainty and noise, and in the second and third examples, the performance of the 
method is compared with other methods and the superiority of the proposed approach in the presence of 
uncertainties is shown.
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1- Introduction
A fault or defect in one part can destroy the performance 

of the whole system. Therefore, today, with the increasing 
complexity and size of systems, establishing security and 
increasing the reliability of advanced systems such as 
spacecraft, aircraft and chemical and nuclear processes 
is of great importance. Immediate fault detection in these 
systems is crucial to ensure security and increase reliability. 
Process and sensor noises as well as uncertainty in system 
parameters, challenge the problem of fault detection and 
isolation. Therefore, many attempts have been made to 
detect and isolate faults and different methods have been 
proposed in the literature. These methods can be divided 
into two categories: analytical and model-based methods. 
Many studies have been done using analytical and 
knowledge-based methods to diagnose defects, for instance, 
the presented method in [1] can detect faults based on the 
model and dynamic behavior of the car suspension system. 
In addition, model-based methods are divided into several 
categories [2]. In this regard, observer-based methods have 
attracted much attention [3].

In this paper, we intend to deal with the problem of fault 
detection and isolation in time-varying discrete systems, in 
the presence of two types of stochastic and norm-bounded 
uncertainties with sensor and process noises using a robust 
Kalman filter. In the presented fault detection and isolation 

method, we first introduce the robust least-squares method. 
Then, we examine the fault detection conditions according 
to the created residues and provide a way to construct the 
threshold so that we do not have a false warning. Therefore, 
we examine the fault isolation conditions and consider some 
limitations in the design of a robust filter for fault detection 
and isolation. By considering these constraints, the system 
residues are obtained in such a way that they are only a 
function of the fault and noise, and these constraints reduce 
the effect of noise on the system residues.

2- Methodology
Considering the fault in the components and operators 

and the uncertainty in the parameters, the system is defined 
as follows:
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According to the system introduced in Eq. (1) and 
the robust Kalman filter presented by Abolhassani and 
Rahmani [4], the fault detection filter is defined as 
follows: 
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Now, the estimation error is defined as follows: 
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To obtain  in Eq. (2), the following augmented 
system is introduced: 
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optimization problem that minimizes the covariance of 
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By introducing the difference between the measured 
values and the estimated output values, the residual 
sequence is defined as follows: 

1ˆk k k kz y y −= −
 (6) 

The upper bound of covariance is obtained as 
follows: 
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Values on the original diameter are associated 
with system residuals. Each of these values can be 
introduced to detect a fault in the system, so that the 
covariance values of the error associated with each case 
should not exceed its upper limit.  

To isolate the fault at k + n, it is necessary to remove 
the fault effect in . Now, if the following 
conditions are applied in solving the problem of convex 
optimization Eq. (5), the operation fault that occurred in 
the system can be isolated from the residual vectors. 

( )
( )

1 1 1 2

1 1 1

ˆ 0

ˆ 0

n
k n k n k n k n

k n k n k n

A L C B

A L C F

+ − + − + − + −

+ − + − + −

− =

− =
 (8) 

Then, 

( ) 1k n k n k k k n k n k k n k nZ C n D D v C Ff + + + + + + −= + + + +  

(9) 

Isolation and fault detection can be performed by 
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3. Results and Discussion 

In this section, two examples are given, in these 
examples, the performance of the presented method is 
compared with the methods in [5,6] respectively. In the 
first example, according to the matrix F, we apply two 
faults in presence of uncertainty in the form of 

( )sin 0.1k  with amplitude of 10 and a step with 

amplitude of 5 at K equal to 50 and 120, respectively, 
and consider the covariance of process noise and sensor 
as 0.2 and 0.1, respectively. As shown in Figs. 1 and 2, 
the proposed method outperforms the method presented 
in [5] in the presence of uncertainty.  
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In the second example, we compare the efficiency 
and performance of the proposed method with the 
method introduced in [6] in the presence of uncertainty 
in system parameters. The covariance of process and 
sensor noise is considered to be 0.1 and 0.01, 
respectively. As Fig. 3 shows, the method presented in 
this paper more accurately identifies and isolates the 
fault that has occurred in the system. 

 

Fig. 1. Performance of the proposed filter and filter 
[5] in sinusoidal fault isolation  

 

 

Fig. 2. Performance of the proposed filter and filter 
[5] in step fault isolation  

 

 

Fig. 3. Performance of the proposed filter and filter 
[6] in step fault isolation  

4. Conclusions 

In this paper, by using the robust Kalman filter and 
examining the errors and residual of the system some 
conditions are achieved. By applying these conditions to 
solve the related convex optimization problem, a new 
robust method for fault detection and isolation in time-
varying discrete systems with stochastic and norm 
bounded uncertainty is obtained. To detect the fault, the 
residual covariance was examined and by obtaining the 
upper bound of residual covariance, which is variable 
with time, and by comparing this time-varying threshold 
with covariance of the residuals at any time, a new 
method for diagnosing the fault was introduced for these 
systems. Then, by applying the conditions obtained 
from the examination of residuals and some 
simplifications, a new robust method for fault isolation 
was proposed. Finally, the simulation results 
demonstrate the better performance and efficiency of the 
proposed approach in comparison with existing 
methods. 
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the proposed method outperforms the method presented in [5] 
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was proposed. Finally, the simulation results demonstrate the 

better performance and efficiency of the proposed approach 
in comparison with existing methods.
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