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ABSTRACT: In this study, the effect of fluid-solid interaction on forced convection flow in a channel 
with the two-dimensional incompressible fluid flow is investigated. One surface can exchange heat and 
the other is elastic and insulated. As the fluid flows through the hot and oscillating elastic surfaces, the 
rate of heat transfer to the fluid varies. In this case, the heat exchange rate behaves as a function of the 
conditions of the oscillating elastic surface, one of the factors affecting the heat exchange is the vibration 
amplitude of the elastic surface. Therefore, the aim of the simulation is to investigate the application of 
the replacement of the elastic boundary with the rigid boundary in a part of the channel and the effect of 
the maximum size of the amplitude of vibration of the vibrating elastic surface on the heat transfer rate. 
It was found that the average Nusselt number and the average temperature of the air leaving the channel 
increase with the replacement of the elastic surface with a part of the rigid channel boundary. Also, 
with increasing the maximum amplitude of oscillation wall vibration, the Naselt number, the average 
temperature of the output fluid, and the rate of heat transfer from the constant temperature level to the 
operating fluid increases..
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1- Introduction
Different approaches have been proposed to enhance the 

heat transfer rate, one of the newest of which is using elastic 
vibration surfaces. The review of previous studies showed 
that theoretically and from a simulation view, the issues of 
heat transfer in Fluid-Solid Interaction (FSI) flows have been 
under-evaluated. Moreover, FSI in industry, including heat 
exchangers, has many applications. Thus, by considering the 
fluid and channel flow with an oscillating elastic surface, 
one can examine the effect of elastic surface vibration on 
heat transfer rate in different geometric compositions. In this 
study, a duct with solid and elastic surfaces is considered to 
be a solid surface where the solid surface is associated with 
heat transfer and the oscillating elastic surface is insulated. 
The study tried the effect of elasticity and maximum 
vibration amplitude of the surface on the rate of heat transfer 
considering the elastic surface and the development of this 
design. Reference [1-4] studied the effect of surface and 
elastic blades on heat transfer. In most of the studies, the 
elastic surface under the force of the moving operating fluid 
begins to oscillate freely and the elastic surface under free 
vibration affects the flow. In such cases, Young’s modulus 
is the main factor in the surface oscillation. Nonetheless, the 
present study considered the forced sinusoidal vibration at 
a frequency of 1Hz and various amplitudes for the elastic 
surface, and the effect of the maximum oscillation amplitude 
on the current, which is less studied.

2- Physical and Mathematical Models
Fig. 1 shows the geometry diagram examined where the 

part of the rigid wall of the upper canal insulation has been 
replaced with an elastic wall. In this case, fluid is the air agent 
entering the two-dimensional channel with the velocity profile 
developed with Reynolds number 100. The lower surface of 
this channel is kept constant at a temperature of 343.15 K and 
the upper surface of this channel is insulated. The average 
inlet flow temperature is 293.15 K. The length of the replaced 
elastic surface is 8 cm and its thickness is 1 mm and its Young 
modulus is 50 MPa. This level with a frequency of 1 Hz in 
four amplitudes of 1.3 cm, 1.0, 0.7, and 0.4 is subjected to 
forced vibration.
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Fig. 1. . Elastic channel scheme 2 
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Fig. 1. Elastic channel scheme 

The study considered slow, two-dimensional, unstable, 
and incompressible flow, accompanied by forced 
convection heat transfer, and the effect of gravitational 
force is ignored [5]. 
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At the above equations, t is the time, v the kinematic 
viscosity, α the diffusion coefficient, p the density, ds 
the elastic surface displacement, 𝜎𝜎𝑠𝑠 the stress tensor, 
and Fs gravity force. 
Moreover, in solving FSI equations, the two boundary 
conditions shown in Eq. (8) must be established, which 
is the condition for the displacement and stress 
matching: [5] 

(2) 

 

3. Results and Discussion 

First, the rigid channel (without elastic surface) is 
solved and the average Nusselt number and the 
coefficient of friction of the surface are examined to 
ensure the accuracy of the results. The results show a 
difference of 5.3 and 5.4%, respectively. 

The results remain constant for a period of about 7 
seconds in 1 second. Thus, the desired parameters such 
as the Nusselt number of the mean instantaneous 
moment after 8 seconds and the stability of the answers 
in a periodicity are averaged and the Nusselt number is 
obtained as the overall average, which is compared with 
the Nusselt number of the average instantaneous 
channel stiffness. 

The flow lines become out of uniform and vortices are 
created along the channel, the findings indicated that 
with the oscillation of the elastic wall. Indeed, by 
fluctuating the elastic surface and increasing the cross-
sectional area of the channel, the fluid moves near the 
elastic wall under the oscillator and reduces the pressure 
in the elastic surface range, and causes the fluid to flow 
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The study considered slow, two-dimensional, unstable, and 
incompressible flow, accompanied by forced convection heat 
transfer, and the effect of gravitational force is ignored [5].
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α the diffusion coefficient, p the density, ds the elastic surface 
displacement,

sσ   the stress tensor, and Fs external force.
Moreover, in solving FSI equations, the two boundary 

conditions shown in Eq. (8) must be established, which is the 
condition for the displacement and stress matching: [5]
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channel stiffness.

The flow lines become out of uniform and vortices are created 
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and increasing the cross-sectional area of the channel, the fluid 
moves near the elastic wall under the oscillator and reduces 
the pressure in the elastic surface range, and causes the fluid to 
flow to the desired range with relatively high pressure upstream 
and downstream. This factor causes the vortices revealed. On 
the other hand, by decreasing oscillation cross section, the flow 
velocity increases, and the number of vortices increase. Hence, 
with the increase in the maximum amplitude of the oscillation, 
the strength and number of vortices increase and the current is 
more affected by the oscillation of the elastic surface, changing 
the flow velocity throughout the channel.

Indeed, with the oscillation of the elastic surface, the cross-
sectional area of the continuous channel changes and causes the 

pressure along the continuous channel to decrease and increase, 
which causes a return flow and the formation of a vortex along 
the channel. Thus, with increasing vibrational amplitude, the 
pressure gradient increases and causes strong vortices.

With the vibration of the oscillator, the operating fluid 
due to the formation of vortices and return flow, besides the 
longitudinal motion, has transverse motion in the channel. 
Hence, with an increase in the oscillation amplitude of the fluid, 
it is more affected and the thickness of the temperature boundary 
layer changes more. Additionally, it is affected by increasing the 
oscillation amplitude of the downstream fluid, which results in 
an increase in the heat transferred to the downstream fluid.

Furthermore, to understand the results of replacing the elastic 
surface instead of the rigid surface better, besides the Nusselt 
number, the average temperature at the channel output surface 
for the rigid and elastic channel in the mentioned oscillating 
amplitudes has been calculated relative to the rigid channel.

Ultimately, the parameters of the average Nusselt number 
and the average temperature of the channel output surface in a 
fixed time interval of 8 to 9 seconds are stabilized and the results 
are mediated in the table to summarize the rate of improvement 
of heat transfer in the channel with fluctuating elastic surface 
relative to the rigid surface and given in Table 1 for comparison. 
Additionally, the change of the studied parameters in the elastic 
channel differs from oscillation ranges compared to the rigid 
channel results is given in this table. For instance, with the 
vibration of the elastic surface under the conditions mentioned 
in the range of 1.3, the Nusselt average increases by 4.4%, and 
the average output temperature increases by 0.6% compared to 
the rigid channel, which indicates an increase in heat transfer.
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Creating vortices caused by the oscillation of the elastic 
surface causes more interference with the flow thus 
increasing the rate of heat transferred from the surface 
to the flow. This value increases continuously with the 
maximum increase of the range. 
Given the direction of flow shown in the velocity 
profiles along the channel and the oblique nature of the 
flow lines, descaling of the surfaces can be stated as one 
of the advantages of replacing the elastic surface in the 
rigid channel. 
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Given the direction of flow shown in the velocity profiles 
along the channel and the oblique nature of the flow lines, 
descaling of the surfaces can be stated as one of the advantages 
of replacing the elastic surface in the rigid channel.
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