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ABSTRACT: In the present study, the efficiency of the finlet as a means of passive trailing-edge noise 
control has been experimentally investigated. Surface pressure spectra, spanwise length scale, and 
eddy convection velocity in the trailing-edge region are important parameters in determining far-field 
trailing-edge noise. In the present study to measure the above parameters, a flat-plate model equipped 
with unsteady surface pressure transducers has been designed and built. Results have shown that the 
flow behavior downstream of the finlets is strongly affected by the spacing between the finlets. The 
use of finlets with coarse spacing leads to a reduction in the surface pressure spectrum at mid to high 
frequencies and an increase in the spanwise length scale at low to mid frequencies. On the other hand, 
for the finlets with fine spacing, while the surface pressure spectrum has been further reduced at high 
frequencies, there has been an undesirable increase at low to mid frequencies. Moreover, fine finlets can 
significantly reduce the coherence and eddy convection velocity at mid to high frequencies. Finally, the 
Amiet-Roger model has been used to evaluate the changes in far-field trailing-edge noise and the results 
have shown the effectiveness of finlets in the mid and especially high frequency range. 
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1- Introduction
In recent decades, increment in noise pollution due to the 

increasing development of the transportation industry, wind 
turbines, cooling and heating systems, etc. has caused many 
undesirable effects. During past decades, noise and acoustic 
pollution have received less attention than other man-
made pollution. Noise pollution can be caused by several 
mechanisms, including aerodynamic noise. Airfoil noise 
is one of the aerodynamic noises which is caused by the 
interaction of unsteady flow with an airfoil’s surface. In 1989, 
Brooks divided the mechanisms of airfoil noise into five 
groups [1]: 1- turbulence boundary layer trail-edge noise, 2- 
laminar boundary layer vortex shedding noise, 3- separation 
(stall) noise, 4- trailing-edge bluntness vortex shedding 
noise, and 5- wing tip vortex noise. Among aforementioned 
noises, turbulent boundary layer trailing-edge noise is one 
of the most important sources of aerodynamic noise in 
aircraft, submarines, wind turbines, and fans, and therefore 
in recent decades, many studies in the manner of analytical, 
numerical, and experimental research have been performed 
on it [2, 3]. 

To reduce trailing-edge noise, various passive airfoil 
noise-control methods have been developed, such as trailing-
edge serrations, trailing-edge brushes, porous trailing edge, 
airfoil shape optimization, trailing-edge morphing, and 
recently upstream finlets, which is inspired by the anatomy 

of silently flying owls [4, 5].In the present study, the effects 
of finlets with different spacing on the mean surface pressure 
distribution, the surface pressure spectra, the frequency-
dependent spanwise length scale, the eddy convection 
velocity in the

trailing-edge region and far-field trailing edge noise of a 
flat plate are investigated. 

2- Experimental Setup 
The flat-plate model, the arrangement of the microphones 

on the model, and the geometric characteristics of finlets are 
illustrated in Fig. 1. The leading edge of the model is made 
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Fig. 1. Schematic view of the model, trip position, array of 

microphones and finlets installed on the model [6]
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2. Experimental Setup  

The flat-plate model, the arrangement of the microphones 

on the model, and the geometric characteristics of finlets 

are illustrated in Fig. 1. The leading edge of the model is 

made in an elliptical shape with a semi-major axis of 12 

mm and a semi-minor axis of 4 mm. To measure the 

unsteady surface pressure, a total of nine miniature 

microphones (Knowles FG-23329-P07) are arranged in 

the form of an L-shaped array on the surface of the flat 

plate. To investigate the effects of finlets spacing, a total 

of four finlets with spacings of s=8; 4; 2 and 0 mm (solid 

section), with a height of h=12 mm, were fabricated using 

three-dimensional (3-D) rapid prototyping. The finlets are 

supported by thin substrates with a thickness of 0.5 mm, 

glued to the flat plate. The leading and trailing edges of the 

substrate are faired to the flat-plate surface by covering it 

with a 0.1 mm thick aluminum tape. The first part of the 

finlets follows the turbulent boundary layer profile, i.e. 
4

5x̂  ( x̂  begins from the finlets leading edge) to avoid 

sudden abrupt changes to the boundary layer. The finlets 

are placed on the top side of the plate, upstream of the 

trailing edge. 
  

 

Fig. 1. Schematic view of the model, trip position, array 

of microphones and finlets installed on the model [6] 

3. Results and Discussion 

Using the pressure fluctuation signals measured 

simultaneously in the spanwise direction, the lateral 

coherence changes were evaluated and the spanwise length 

scale and the eddy convection velocity in the trailing-edge 

region were obtained. The presence of finlets causes the 
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in an elliptical shape with a semi-major axis of 12 mm and a 
semi-minor axis of 4 mm. To measure the unsteady surface 
pressure, a total of nine miniature microphones (Knowles 
FG-23329-P07) are arranged in the form of an L-shaped array 
on the surface of the flat plate. To investigate the effects of 
finlets spacing, a total of four finlets with spacings of s=8; 4; 
2 and 0 mm (solid section), with a height of h=12 mm, were 
fabricated using three-dimensional (3-D) rapid prototyping. 
The finlets are supported by thin substrates with a thickness 
of 0.5 mm, glued to the flat plate. The leading and trailing 
edges of the substrate are faired to the flat-plate surface by 
covering it with a 0.1 mm thick aluminum tape. The first part 
of the finlets follows the turbulent boundary layer profile, i.e. 

4
5x̂  ( x̂  begins from the finlets leading edge) to avoid sudden 

abrupt changes to the boundary layer. The finlets are placed on 
the top side of the plate, upstream of the trailing edge.

3- Results and Discussion
Using the pressure fluctuation signals measured 

simultaneously in the spanwise direction, the lateral coherence 
changes were evaluated and the spanwise length scale and 
the eddy convection velocity in the trailing-edge region were 
obtained. The presence of finlets causes the flow downstream 
of the finlets to be three-dimensional. To evaluate the finlet’s 
efficiency in reducing the surface pressure spectra in different 
lateral positions, the results of the surface pressure spectra in 
spanwise direction (microphones p1 – p5) for different finlets 
are presented in Fig. 2. As can be seen, for the s=8, the presence 
of finlets generally leads to a significant reduction of the surface 
pressure over the mid to high frequencies, with no noticeable 
changes to the low-frequency energy content of the boundary 
layer. By reducing the spacing between the finlets to 4 mm (s=4), 
their effectiveness in reducing the surface pressure spectra at mid 

to high frequencies increases. For the s=2, the results demonstrate 
that, while the presence of finlets leads to a significant reduction 
in the pressure spectra at high frequencies, it also results in an 
undesirable increase in low to mid-frequencies.

Predicted turbulent boundary layer trailing-edge noise using 
the Amiet -Roger analytical model [9] at a vertical spacing from 
the trailing edge of the model is shown in Fig. 3. The difference 
between the trailing-edge noise in the presence and absence of 
finlets is presented in Fig. 3. Therefore, positive values indicate 
an increase in trailing-edge noise, and negative values indicate 
a decrease in trailing edge noise in the presence of finlets. 
According to Fig. 3, all finlets are found to be effective at mid 
to high

Fig. 2. Surface pressure spectra measured by microphones located in spanwise direction (p1-p5) for a) sample 
8s =  ) b) sample 4s = , c) sample 2s = , d) sample 0s =  (Backward-facing step)

Fig. 3. Trailing edge noise predicted using the Amiet -Roger 
analytical model [7] in the vertical spacing of 1 my ′ =
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the use of coarse spacing (s=8) leads to a significant noise 
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approximately 2 dB increase at low frequencies. For the 

finlets with fine spacing (s=2), these effects have been 

observed to intensify, that is, more increase at low 
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frequencies (up to 18 dB). The results also show that the 

case of s=4 is an optimal case so that despite the excellent 

performance at high frequencies, it has acceptable 

negative effects in the low frequency range. 
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frequencies. However, the finlets appear to increase the 
trailing edge noise at the low frequencies. As can be seen, the 
use of coarse spacing (s=8) leads to a significant noise reduction 
at high frequencies (up to 10 dB) with an approximately 2 dB 
increase at low frequencies. For the finlets with fine spacing 
(s=2), these effects have been observed to intensify, that is, more 
increase at low frequencies (up to 8dB) and more reduction 
at high frequencies (up to 18 dB). The results also show that 
the case of s=4 is an optimal case so that despite the excellent 
performance at high frequencies, it has acceptable negative 
effects in the low frequency range.

4- Conclusions
In the present study, the trailing-edge noise reduction 

of a flat plate equipped with finlets was investigated. for 
this purpose, the effects of finlets on the main parameters 
determining the turbulent boundary layer trailing-edge noise 
including the surface pressure spectrum, the spanwise length 
scale of surface pressure fluctuations, and the eddy convection 
velocity in the trailing-edge region were investigated. The 
results showed that the flow behavior downstream of the 
finlets is strongly dependent on the finlet spacing. However, 
the far-field noise predicted by the Amiet-Roger model shows 
the effectiveness of all finlets in the mid and especially high 
frequency range.
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