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ABSTRACT: One way to improve air-fuel mixing in a gas diffusion flame is to produce targeted vortices 
and circulate the flow using a bluff body. In this study, the influences of radius, thickness, and location of 
a disk-shaped bluff body on the performance of a methane gas diffusion flame are numerically studied. 
This investigation is carried out under both cold mixing and hot mixing (with combustion reaction) 
conditions. The present simulation is verified against experimental data. The results show the substantial 
influence of the mentioned parameters on the size and intensity of downstream vortices, and a direct 
dependence is observed between the sizes of inner and outer recirculation zones and air-fuel mixing. It 
is also observed that the flow pattern and level of air-fuel mixing are more dependent on the bluff body’s 
radius than its thickness. Based on the hot mixing simulation results and regarding the dependence 
between the rates of the chemical reaction and turbulence mixing, the higher rate of air-fuel mixing is 
associated with the decreased flame length. Among the cases investigated, the bluff body with a radius 
of 6mm, the thickness of 5mm, and axial location of 5mm away from the air channel exit results in the 
best air-fuel mixing. 
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1- Introduction
Mounting a Bluff Body (BB) at the burner head is a 

simple passive method which can substantially enhance the 
reactants mixing and combustion quality by inducing some 
targeted vortices downstream.

Various research works, mainly experimental, have been 
conducted to figure out the influence of BB on the burner 
performance. As a brief summary, it was observed that: A 
planar BB led to larger vortices, as compared to cylindrical 
and wedge-shaped BBs [1]. Increasing the cone angle of a 
conic BB resulted in larger and more elliptical vortices [2]. A 
tulip-shaped BB produced a more stable flame, as compared 
to a planar BB [3]. A larger diameter of a disk-shaped BB 
resulted in a shorter flame [4]. Targeted downstream vortices 
could enhance turbulence and air-fuel mixing [5]. The size 
of vortices was highly affected by the BB obstruction ratio 
[6]. Mounting a BB 10mm after the air channel exit resulted 
in larger vortices and a more stable flame [7].

This study numerically investigates the influences of 
thickness, radius, and location of a disk-shaped BB on air-
fuel mixing and properties of resulting gas diffusion flame. 
Furthermore, the sensitivity of the results to the mentioned 
variables is analyzed. To the authors’ knowledge, such 
quantitative study and sensitivity analysis have not been 
addressed in the literature.

2- Methodology 
A gas diffusion burner (shown in Fig. 1), with the 

specifications reported in Ref. [7], is considered as the case 
study. Governing equations and simulation approaches are 
briefly described in this section. Methane oxidation is assumed 
to be single-step. The mass, momentum, energy, and species 

*Corresponding author’s email: mahmoudimehr@guilan.ac.ir
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Schmidt and Prandtl numbers.  Y , h  and ReactionS  
represent species molar fraction, enthalpy, and reaction 
heat source, respectively. R denotes the rate of creation 
of species and is obtained from the Eddy Dissipation 
model [9]. The fluctuation term (last term) in Eq. (2) is 
modeled using the k-ω (SST) turbulence model [10]. 

RadiationS  is the radiation heat source which is calculated 
by Discrete Ordinates (DO) approach [11]. The 
governing equations are solved via a finite volume 
scheme by using ANSYS Fluent software.                          

     To verify the present simulation, it is compared with 
the experimental data of [7]. Fig. 2 shows a good 

agreement between the current simulation and the 
experimental data. 
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Fig. 2. Verification study: radial velocity on the line 
perpendicular to the axis and 2mm away from BB (fuel 

and air inlet velocities are 10m/s and 5.84m/s, respectively) 

3. Results and Discussion 

The burner has been numerically simulated for the 
different set values of BB thickness, BB radius, and the 
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transport equations are shown in Eqs. (1) to (4), respectively 
[8]. In which, 

tµ , 
tSc  and 

tPr  are turbulent viscosity, Schmidt 
and Prandtl numbers. Y, h and ReactionS  represent species molar 
fraction, enthalpy, and reaction heat source, respectively. R 
denotes the rate of creation of species and is obtained from the 
Eddy Dissipation model [9]. The fluctuation term (last term) 
in Eq. (2) is modeled using the k-ω (SST) turbulence model 
[10]. 

RadiationS  is the radiation heat source which is calculated 
by Discrete Ordinates (DO) approach [11]. The governing 
equations are solved via a finite volume scheme by using 
ANSYS Fluent software.

To verify the present simulation, it is compared with the 
experimental data of [7]. Fig. 2 shows a good agreement 
between the current simulation and the experimental data.
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set values of BB thickness, BB radius, and the gap between 
BB and air inlet (designated with “A”, “B”, and “H” in Fig. 
1, respectively). Contours of methane molar fraction (for air 
velocity of 3.75 m/s, fuel velocity of 10m/s, and BB thickness 
and radius of 5mm) are shown in Fig. 3. The steeper the drop 
of methane along the burner centerline (or axis), the greater 
the diffusion of surrounding air into the fuel. Therefore, the 
rate of fuel drop along the axis can be considered as a mixing 
quality indicator. The influences of BB thickness and radius 
are illustrated in terms of methane molar fraction in Figs. 4 
and 5, respectively. These figures indicate that the air-fuel 
mixing is more affected by BB thickness than BB radius. 
Fig. 5 also shows that the air-fuel mixing improves as the BB 
radius increases. To analyze this observation, the streamlines 
are illustrated for the smallest and largest BB radii in Figs. 6 
and 7, respectively. These figures indicate that a larger radius 
resulted in larger inner and outer recirculation zones, thereby 
enhancing the air-fuel mixing. Similar analyses were carried 
out for the effect of BB location on the burner performance, 
and it was observed that from among the different locations, 
a gap of 5mm between the BB and the air inlet led to the best 
air-fuel mixing (or steepest drop in methane along the axis). 
The results are not repeated to be graphically shown for the 
sake of conciseness.

Fig. 2. Verification study: radial velocity on the line perpendicular 
to the axis and 2mm away from BB (fuel and air inlet velocities 

are 10m/s and 5.84m/s, respectively)

Fig. 3. Contours of methane molar fraction 

Fig. 4. Effect of BB thickness on methane drop along the axis
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gap between BB and air inlet (designated with “A”, 
“B”, and “H” in Fig. 1, respectively). Contours of 
methane molar fraction (for air velocity of 3.75 m/s, 
fuel velocity of 10m/s, and BB thickness and radius of 
5mm) are shown in Fig. 3. The steeper the drop of 
methane along the burner centerline (or axis), the 
greater the diffusion of surrounding air into the fuel. 
Therefore, the rate of fuel drop along the axis can be 
considered as a mixing quality indicator. The influences 
of BB thickness and radius are illustrated in terms of 
methane molar fraction in Figs. 4 and 5, respectively. 
These figures indicate that the air-fuel mixing is more 
affected by BB thickness than BB radius. Fig. 5 also 
shows that the air-fuel mixing improves as the BB 
radius increases. To analyze this observation, the 
streamlines are illustrated for the smallest and largest 
BB radii in Figs. 6 and 7, respectively. These figures 
indicate that a larger radius resulted in larger inner and 
outer recirculation zones, thereby enhancing the air-fuel 
mixing. Similar analyses were carried out for the effect 
of BB location on the burner performance, and it was 
observed that from among the different locations, a gap 
of 5mm between the BB and the air inlet led to the best 
air-fuel mixing (or steepest drop in methane along the 
axis). The results are not repeated to be graphically 
shown for the sake of conciseness.  
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Fig. 4. Effect of BB thickness on methane drop along the 
axis 
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Fig. 6. Streamlines for BB radius of 4 mm 

 
Fig. 7. Streamlines for BB radius of 6 mm 

4. . Conclusions 

In this study, the influences of bluff body location and 
size on the performance of a gas diffusion burner were 
numerically investigated. The rate of methane drop (or 
oxygen rise) along the burner axis was considered as a 
measure of air-fuel mixing quality. The results indicated 
that the mentioned parameters had substantial effects on 
burner performance; furthermore, it was observed that 
the bluff body radius had a greater effect on the 
downstream vortices and air-fuel mixing, as compared 
to the bluff body thickness. Among the cases studied, a 
bluff body with a thickness of 5mm, a radius of 6mm, 
and a distance of 5mm from the air inlet resulted in the 
best air-fuel mixing.  
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4- Conclusions
In this study, the influences of bluff body location and size 

on the performance of a gas diffusion burner were numerically 
investigated. The rate of methane drop (or oxygen rise) 
along the burner axis was considered as a measure of air-
fuel mixing quality. The results indicated that the mentioned 
parameters had substantial effects on burner performance; 
furthermore, it was observed that the bluff body radius had a 
greater effect on the downstream vortices and air-fuel mixing, 
as compared to the bluff body thickness. Among the cases 
studied, a bluff body with a thickness of 5mm, a radius of 
6mm, and a distance of 5mm from the air inlet resulted in the 
best air-fuel mixing. 
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greater the diffusion of surrounding air into the fuel. 
Therefore, the rate of fuel drop along the axis can be 
considered as a mixing quality indicator. The influences 
of BB thickness and radius are illustrated in terms of 
methane molar fraction in Figs. 4 and 5, respectively. 
These figures indicate that the air-fuel mixing is more 
affected by BB thickness than BB radius. Fig. 5 also 
shows that the air-fuel mixing improves as the BB 
radius increases. To analyze this observation, the 
streamlines are illustrated for the smallest and largest 
BB radii in Figs. 6 and 7, respectively. These figures 
indicate that a larger radius resulted in larger inner and 
outer recirculation zones, thereby enhancing the air-fuel 
mixing. Similar analyses were carried out for the effect 
of BB location on the burner performance, and it was 
observed that from among the different locations, a gap 
of 5mm between the BB and the air inlet led to the best 
air-fuel mixing (or steepest drop in methane along the 
axis). The results are not repeated to be graphically 
shown for the sake of conciseness.  
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4. . Conclusions 

In this study, the influences of bluff body location and 
size on the performance of a gas diffusion burner were 
numerically investigated. The rate of methane drop (or 
oxygen rise) along the burner axis was considered as a 
measure of air-fuel mixing quality. The results indicated 
that the mentioned parameters had substantial effects on 
burner performance; furthermore, it was observed that 
the bluff body radius had a greater effect on the 
downstream vortices and air-fuel mixing, as compared 
to the bluff body thickness. Among the cases studied, a 
bluff body with a thickness of 5mm, a radius of 6mm, 
and a distance of 5mm from the air inlet resulted in the 
best air-fuel mixing.  
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