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ABSTRACT:  In this paper, the lateral-torsional buckling behavior of thin-walled FML beams with 
varying I-section is perused using an innovative and accurate methodology. Considering the coupling 
between the bending displacements and the twist angle, the system of lateral stability equations are 
derived via energy method in association with Vlasov’s model for thin-walled beam and the classic 
lamination theory. By uncoupling the equilibrium differential equations, the system of governing 
equations is transformed to a fourth-order differential equation in terms of the twist angle. The differential 
quadrature method is then applied to solve the resulting equation and to acquire the lateral buckling 
loads. The accuracy of the proposed methodology has been investigated by comparing the results with 
the outcomes obtained using ANSYS finite element software. In the following, the effect of significant 
parameters such as stacking sequence, fiber angle, fiber type, web tapering ratio, load height parameter 
and volume fraction of metal on lateral buckling load of fixed-free FML tapered I-beam under uniformly 
distributed load has been investigated. The results shows that the optimum fiber orientation is achieved 
is obtained by placing fibers at 45 in the web and 0 in both flanges between two aluminum sheets.
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1. INTRODUCTION
Today, the fabrication of thin-walled beams from various 

materials such as steel, wood, fiber-reinforced composite 
materials, and functionally graded materials has become 
possible by developing pultrusion and assembly methods. 
Fiber metal laminations (FMLs) are a new class of hybrid 
materials built from several thin sheets of metal alloys and 
fiber-reinforced epoxy composite plies. In this paper, the 
lateral-torsional stability analysis of web and/or flanges 
tapered FML I-beam is investigated using the Differential 
Quadrature Method (DQM). For this, the general and 
straightforward procedure suggested by Soltani et al. [1, 2] 
is adopted. 

2. GOVERNING EQUATIONS
A schematic of thin-walled FML beam with length L 

varying I-section subjected to uniformly distributed load 
is shown in Fig. 1. The orthogonal right-hand Cartesian 
coordinate system (x, y, z) is adopted, wherein x denotes the 
longitudinal axis and y and z are the first and second principal 
bending axes parallel to the flanges and web, respectively. The 
origin of these axes (O) is located at the centroid of the cross-
section. It is supposed that all section walls are composed 
of two metal layers at the outer sides of the fiber-reinforced 
polymer laminates. 

Based on small displacements assumption and Vlasov’s 

thin-walled beam theory for non-uniform torsion, the 
displacement fields can be expressed as [3]:
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where , ,U V W  stand for to the axial, lateral and vertical 
displacement components along the , ,x y z  direction, 
respectively, whereas , ,u v w  are the kinematic quantities 
defined at the reference surface, the term ( , )y zω  refers to 
the warping function for the variable cross-section, defined 
by means of Vlasov torsion theory [3], and θ  is the twisting 
angle. In this research, equilibrium equations and boundary 
conditions are derived from stationary conditions of the 
total potential energy. Based on this principle, the following 
relation is obtained

0 0l eU U WδΠ = δ + δ − δ = � (2)

In this formulation, δ  denotes a variational operator. 
lU  and 0U  represent the elastic strain energy and the strain 

energy due to effects of the initial stresses, respectively. 
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We denotes work done by external applied loads. Their 
relationships for each term of the total potential energy are 
developed separately in the following:

( )
0

L l l l
l xx xx xy xy xz xzA

U dAdxδ σ δε τ δγ τ δγ= + +∫ ∫ �(3a)

0 * 0 * 0 *
0 0
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0
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e z pW q w dxδ δ= ∫ �(3c)

where L  and A  stand for the beam length and the cross-
sectional area, respectively. Moreover, ( , ,i i i

xx xz xyδε δγ δγ ) 
and ( * * *, ,xx xz xyδε δγ δγ ) refer to the variation of the linear and 
non-linear part of the strain tensor, respectively; whereas 

, ,xx xz xyσ τ τ  denote the Piola–Kirchhoff stress tensor 
components, and 0 0 0, ,xx xz xyσ τ τ  are the initial axial and shear 
stress conditions. According to Fig. 1, it is contemplated 
that the external bending moment occurs about the major 
principal axis ( *

yM ). Therefore, the magnitude of bending 
moment with respect to z-axis is equal to zero.  Regarding 
this, the most general case of normal and shear stresses 
associated the external bending moment *

yM  and shear force 
Vz are considered as:

* *
0 0 0;  ;  0 y yz
xx xz xy

y

M MVz
I A A

σ σ σ
′

= − = = − =

�

(4)

In Eq. (3c), wP is the vertical displacement of point P. 
According to kinematics used in Asgarian et al. [1] and 
by adopting the quadratic approximation, the vertical 
displacement of the point P and its first variation are as 
follows:

2

  
2P P P Pw w z w w z= − → = −
θ δ δ θδθ

                     
(5a,b)

In this equation, zP is used to imply the eccentricity of 
the applied loads from the centroid of the cross-section. The 
expression of the firs variation of total potential energy is 
finally obtained as
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where ( )comEA denotes axial rigidity. ( )y comEI  and ( )z comEI  
represent the flexural rigidities of the y- and z-axes, 
respectively. ( )ω comEI  and ( )comGJ are, respectively, warping 
and torsional rigidities of composite thin-walled beams with 
doubly symmetric I-section, defined by [4, 5]:
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Fig. 1: FML beam with variable doubly symmetric I-section under external distributed loads: Notation for displacement 

parameters, and web and flanges lay-up arrangement. 

  

Fig. 1. FML beam with variable doubly symmetric I-section under external distributed loads: 
Notation for displacement parameters, and web and flanges lay-up arrangement
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Based on Eq. (6), the first variation of the total potential 
energy contains the virtual displacements ( , , ,u v wδ δ δ δθ ) 
and their derivatives. After appropriate integrations by parts, 
and after mathematical simplifications, we get the following 
equilibrium equations in the stationary state 

0(( ) ) 0comEA u ′ ′ = � (8a)

( )( )y com zEI w q′′′′ =
�

(8b)
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In the equilibrium equations, the first and second ones are 
uncoupled and stable, and do not affect the lateral buckling 
behavior of I-beam subjected to transverse loading. The 
differential equations (8c, d) have a coupled nature due to 
the presence of the lateral deflection v  and torsion θ  
component, as well as the bending moment *

yM . Based on 
the straightforward methodology presented by Asgarian et 
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where ( )comEA denotes axial rigidity. ( )y comEI  and 

( )z comEI  represent the flexural rigidities of the y- and z-
axes, respectively. ( ) comEI  and ( )comGJ are, 
respectively, warping and torsional rigidities of 
composite thin-walled beams with doubly symmetric I-
section, defined by [4, 5]: 
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Based on Eq. (6), the first variation of the total potential 
energy contains the virtual displacements (

, , ,u v w    ) and their derivatives. After 
appropriate integrations by parts, and after mathematical 
simplifications, we get the following equilibrium 
equations in the stationary state  

0(( ) ) 0comEA u   =  (8a) 
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In the equilibrium equations, the first and second ones are 
uncoupled and stable, and do not affect the lateral 
buckling behavior of I-beam subjected to transverse 
loading. The differential equations (8c, d) have a coupled 
nature due to the presence of the lateral deflection v  and 
torsion   component, as well as the bending moment 

*
yM . Based on the straightforward methodology 

presented by Asgarian et al. [1], the governing 
equilibrium equation for the torsional angle (8d) can be 
rewritten as 
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3. Results and Discussion  

To solve the resulting fourth-order differential 
equation with variable coefficient and to calculate the 
lateral buckling load of FML web tapered I-beam 
subjected to different end conditions, the DQM is 
employed. In order to validate the acquired outcomes of 
methodology presented herein, comparisons have been 
carried out with those presented by Soltani et al. [2], and 
ones obtained by ANSYS software.  In this section, the 
linear lateral buckling analysis is performed for a fixed-
free transversely loaded 10-layer FML web tapered I-
beam with a span of 10m. All section walls (both flanges 
and web) are laminated symmetrically concerning its 
mid-plane and made of Aluminum alloy 2024-T3 (outer 
metal layers) and Carbon/epoxy material (eight inner 
composite layers). The material features of the lamina are 
as follows: for the aluminum plies, E = 72.4 GPa and υ = 
0.33; and for the fiber-reinforced composite layers, Ex = 
181 GPa, Ey = 10.3 GPa, Gxy = 7.17 GPa, and υxy = 
0.28. 

Considering the optimum laminate stacking 
sequence, the lateral-torsional buckling load variation 
versus the metal volume fraction and web tapering ratio 
and for three different loading positions is presented in 
Fig. 2. 

Fig. 2: Variation of the lateral buckling load with respect 
to the metal volume fraction and web tapering for 

CARALL section for three different transverse loading 
positions, (a) Top flange, (b) Centroid, (c) Bottom flange.  

4. Conclusions 

The present research deals with the lateral-torsional 
buckling analysis of FML tapered doubly-symmetric I-
beam. Based on Vlasov’s theory for thin-walled cross-
section and the classical lamination plate theory, the 
system of two-coupled governing equations is derived 

(a) 

(b) 

(c) 

(c) 

Fig. 2. Variation of the lateral buckling load with respect to the 
metal volume fraction and web tapering for CARALL section 
for three different transverse loading positions, (a) Top flange, 

(b) Centroid, (c) Bottom flange

al. [1], the governing equilibrium equation for the torsional 
angle (8d) can be rewritten as
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3. RESULTS AND DISCUSSION 
To solve the resulting fourth-order differential equation 

with variable coefficient and to calculate the lateral buckling 
load of FML web tapered I-beam subjected to different 
end conditions, the DQM is employed. In order to validate 
the acquired outcomes of methodology presented herein, 
comparisons have been carried out with those presented by 
Soltani et al. [2], and ones obtained by ANSYS software.  In 
this section, the linear lateral buckling analysis is performed 
for a fixed-free transversely loaded 10-layer FML web tapered 
I-beam with a span of 10m. All section walls (both flanges 
and web) are laminated symmetrically concerning its mid-
plane and made of Aluminum alloy 2024-T3 (outer metal 
layers) and Carbon/epoxy material (eight inner composite 
layers). The material features of the lamina are as follows: 
for the aluminum plies, E = 72.4 GPa and υ = 0.33; and for 
the fiber-reinforced composite layers, Ex = 181 GPa, Ey = 10.3 
GPa, Gxy = 7.17 GPa, and υxy = 0.28.

Considering the optimum laminate stacking sequence, 
the lateral-torsional buckling load variation versus the metal 
volume fraction and web tapering ratio and for three different 
loading positions is presented in Fig. 2.

4. CONCLUSIONS
The present research deals with the lateral-torsional 

buckling analysis of FML tapered doubly-symmetric I-beam. 
Based on Vlasov’s theory for thin-walled cross-section and the 
classical lamination plate theory, the system of two-coupled 
governing equations is derived via the energy method. The 
effect of transverse loading position is also considered in the 
formulation. The differential quadrature method is then used 
to estimate the buckling load for web and flanges tapered 
beam. Based on the presented results, the endurable lateral 
buckling decrease significantly with increasing the volume 
fraction of the metal. This result is predictable based on the 
material properties of carbon/epoxy and aluminum. It should 
be noted that MVF=0 represents full fiber composite I-section 
in the absence of metal layers, and MVF=1 indicates that all 
cross-section walls are entirely made of aluminum. Moreover, 
it is seen that the uniformly transverse load position has a 
significant effect on the stability strength of unrestrained 
laminated composite beams with varying doubly-symmetric 
I-section. For these loading cases, the lateral buckling strength 
will be improved when the distributed load location is on the 
bottom flange due to the reduced rotation of the I-section 
from its original, and the lower values are obtained when the 
load is applied on the top flange position. Note also that the 
web non-uniformity parameter has a considerable impact on 
the lateral-torsional buckling strength.
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