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ABSTRACT: In the present study, the effect of external magnetic field on the process of droplet 
formation with different sizes and frequencies in a flow-focusing micro-channel is numerically 
studied. Moreover, the influence of non-Newtonian properties on the droplet formation characteristics 
is investigated using two non-Newtonian Carreau and power-law models. To solve the continuity and 
momentum equations for unsteady, two-phase, and incompressible flow, the finite volume method is 
employed. A numerical algorithm based on the volume-of-fluid technique is used to determine the effect 
of Bond number (0 to 0.2) and Power-law indices (0.3, 0.6, and 1.3) on the droplet formation process 
along with their size and separation time. To validate the numerical solution, the formation of Newtonian 
fluid droplets at different values of magnetic field strength is compared with the results of other studies 
and very good agreement was observed. The results of the numerical solution show that the Carreau 
fluid droplet in the Bond number of 0.2 has the highest volume, which is equivalent to the dimensionless 
volume of 1.56. Also, the process of droplet formation is more affected by the magnetic field than by the 
non-Newtonian model. Besides, with developing the field strength, droplet separation time increases and 
as a result, larger droplets with lower frequency will be formed.
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1- Introduction
Microfluidic droplets are generated by the injection of 

immiscible fluids into the microchannel structures. Fluid 
manipulation such as droplet generation, mixing, sorting, 
and transport is accomplished in active and passive manners. 
Droplet size and production frequency can be controlled by 
adjusting flow rate, viscosity, and interfacial tension. Various 
active mechanisms have utilized external fields among 
which magnetic field is popular where magnetic particles 
inside a drop allow the precise control and manipulation of 
droplets. In general, passive and active microfluidic devices 
are applicable in the separation of biological particles such 
as blood and tumor cells. These devices provide improved 
sensitivity, efficiency, and operational range.

Experimental/numerical studies have investigated the 
effect of magnetic fields on droplets in different geometries. 
In a T-junction [1], an upstream magnet, pulls the ferrofluid 
droplets back, prolonging the production cycle and increasing 
the size of the droplets. The downstream magnet, however, 
acts oppositely. Investigation of the flow-focusing structure 
[2] concludes that droplet size depends highly on the flow 
rate, magnetism, magnetic field gradient, and location. The 
droplets’ response also changes according to the viscosity 
described by different functions. These results explain the 
basis of droplet microfluidics, facilitating the applications. 

The numerical study of non-Newtonian droplet generation 
in a co-flowing structure reveals that in the jet regime, the 
volume of droplets is less dependent on the viscosity [3].

Recent studies explored the effect of magnetic field and 
viscosity. However, their simultaneous effect has not been 
studied in any flow-focusing device yet. Thus, in the present 
study, the flow-focusing channel was investigated for 
Newtonian and non-Newtonian fluids while changing the 
Bond number from 0 to 0.2. Two non-Newtonian viscosity 
models were used: Carreau and power-law. The velocity and 
pressure fields were compared during the analysis process 
as well as the droplet size and separation times. Also, for 
Bm=0.1, the droplet formation process was studied for power-
law fluids of n = 0.3, n = 0.61 and n = 1.3.

2- Methodology
The droplet formation in a flow-focusing configuration was 

investigated with/without a magnetic field. The computational 
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explain the basis of droplet microfluidics, facilitating 
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droplet generation in a co-flowing structure reveals that 
in the jet regime, the volume of droplets is less 
dependent on the viscosity [3]. 

Recent studies explored the effect of magnetic field 
and viscosity. However, their simultaneous effect has 
not been studied in any flow-focusing device yet. Thus, 
in the present study, the flow-focusing channel was 
investigated for Newtonian and non-Newtonian fluids 
while changing the Bond number from 0 to 0.2. Two 
non-Newtonian viscosity models were used: Carreau 
and power-law. The velocity and pressure fields were 
compared during the analysis process as well as the 
droplet size and separation times. Also, for Bm=0.1, the 
droplet formation process was studied for power-law 
fluids of n = 0.3, n = 0.61 and n = 1.3. 

2. Methodology 
The droplet formation in a flow-focusing configuration 
was investigated with/without a magnetic field. The 
computational domain illustrated in Fig. 1, consists of 
immiscible continuous and dispersed fluids entering the 
side and main-channel, respectively. The governing 
equations are the continuity and momentum in transient 
form while the non-Newtonian shear stress changes 
with the deformation tensor (Eqs. (1) to (3)). 
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Fig. 1. Computational domain and the magnetic field 
setup. The channel width and height are L=100 μm. 

Due to the symmetric flow and geometry, only 1/4 
of the domain is calculated reducing the computations. 
The no-slip walls and outlet output boundary conditions 
were applied. Magnetic body force is defined on the 
interface as the last right-side phrase of Eq. (2) where μ0 
is the free space permeability constant, H the magnetic 
field strength, and χm the ferrofluid magnetic 
susceptibility. The susceptibility gradient, proportional 
to the phase gradient, results in the interface tracking via 
Eqs. (4) and (5). The dimensionless Bond number was 
used indicating the effect of the magnetic field along 
with the dimensionless numbers described in Eq. (6). 
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where μ1 is the dispersed phase viscosity and μ2, ρ2, u2 
define the continuous phase viscosity, density, and 
velocity, respectively. σ defines the interfacial tension of 
phases. The continuous phase is Newtonian, while 
Newtonian, non-Newtonian Carreau, and power models 
have been used for the dispersed phase viscosity models 
as: 

(1 ( ) )m a   = + +  (7) 
1nk  −=  (8) 

where η∞ is the infinite-plane shear viscosity, Δη its 
difference with zero-plane viscosity. λ, a and k denote 
the time and power-law index (a=-(n-1)/2) and a 
measure of mean viscosity, respectively. Table 1 
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domain illustrated in Fig. 1, consists of immiscible continuous 
and dispersed fluids entering the side and main-channel, 
respectively. The governing equations are the continuity and 
momentum in transient form while the non-Newtonian shear 
stress changes with the deformation tensor (Eqs. (1) to (3)).

Due to the symmetric flow and geometry, only 1/4 of the 
domain is calculated reducing the computations. The no-slip 
walls and outlet output boundary conditions were applied. 
Magnetic body force is defined on the interface as the last right-
side phrase of Eq. (2) where μ0 is the free space permeability 
constant, H the magnetic field strength, and χm the ferrofluid 
magnetic susceptibility. The susceptibility gradient, proportional 
to the phase gradient, results in the interface tracking via Eqs. (4) 
and (5). The dimensionless Bond number was used indicating 
the effect of the magnetic field along with the dimensionless 
numbers described in Eq. (6).
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production cycle and increasing the size of the droplets. 
The downstream magnet, however, acts oppositely. 
Investigation of the flow-focusing structure [2] 
concludes that droplet size depends highly on the flow 
rate, magnetism, magnetic field gradient, and location. 
The droplets' response also changes according to the 
viscosity described by different functions. These results 
explain the basis of droplet microfluidics, facilitating 
the applications. The numerical study of non-Newtonian 
droplet generation in a co-flowing structure reveals that 
in the jet regime, the volume of droplets is less 
dependent on the viscosity [3]. 

Recent studies explored the effect of magnetic field 
and viscosity. However, their simultaneous effect has 
not been studied in any flow-focusing device yet. Thus, 
in the present study, the flow-focusing channel was 
investigated for Newtonian and non-Newtonian fluids 
while changing the Bond number from 0 to 0.2. Two 
non-Newtonian viscosity models were used: Carreau 
and power-law. The velocity and pressure fields were 
compared during the analysis process as well as the 
droplet size and separation times. Also, for Bm=0.1, the 
droplet formation process was studied for power-law 
fluids of n = 0.3, n = 0.61 and n = 1.3. 

2. Methodology 
The droplet formation in a flow-focusing configuration 
was investigated with/without a magnetic field. The 
computational domain illustrated in Fig. 1, consists of 
immiscible continuous and dispersed fluids entering the 
side and main-channel, respectively. The governing 
equations are the continuity and momentum in transient 
form while the non-Newtonian shear stress changes 
with the deformation tensor (Eqs. (1) to (3)). 
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Fig. 1. Computational domain and the magnetic field 
setup. The channel width and height are L=100 μm. 

Due to the symmetric flow and geometry, only 1/4 
of the domain is calculated reducing the computations. 
The no-slip walls and outlet output boundary conditions 
were applied. Magnetic body force is defined on the 
interface as the last right-side phrase of Eq. (2) where μ0 
is the free space permeability constant, H the magnetic 
field strength, and χm the ferrofluid magnetic 
susceptibility. The susceptibility gradient, proportional 
to the phase gradient, results in the interface tracking via 
Eqs. (4) and (5). The dimensionless Bond number was 
used indicating the effect of the magnetic field along 
with the dimensionless numbers described in Eq. (6). 
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where μ1 is the dispersed phase viscosity and μ2, ρ2, u2 
define the continuous phase viscosity, density, and 
velocity, respectively. σ defines the interfacial tension of 
phases. The continuous phase is Newtonian, while 
Newtonian, non-Newtonian Carreau, and power models 
have been used for the dispersed phase viscosity models 
as: 

(1 ( ) )m a   = + +  (7) 
1nk  −=  (8) 

where η∞ is the infinite-plane shear viscosity, Δη its 
difference with zero-plane viscosity. λ, a and k denote 
the time and power-law index (a=-(n-1)/2) and a 
measure of mean viscosity, respectively. Table 1 
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The 3D-Finite Volume (FV) method has been 
employed to solve the governing equations. In addition, 
fluid density was assumed to change linearly by  and 
the interface tracing was calculated as: 
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The Semi-Implicit Method for Pressure Linked 
Equations-Consistent (SIMPLEC) pressure-velocity 
coupling method, PREssure STaggering Option 
(PRESTO) pressure discretization, momentum second-
order upwind technique, volume fraction geometric 
reconstruction, and implicit temporal integration were 
employed. In the numerical algorithm, the magnetic 
volume force is added to the main code via a user 
function written in the C programming language (Fig. 
2). 

 
Fig. 2. Flowchart of the numerical solution. 

3. Results and Discussion  
The mesh independence of the solution is evaluated 
with the droplet dimensionless volume. According to 
the results, 25,169 mesh cells are used for the 
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formation process was performed by the volume of fluid 
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and interface tracking and validated with Liu et al. [2] 
with and without a magnetic field. After the validation, 
the effect of the magnetic field was analyzed as 
opposing velocities appear in the process. According to 

the results in Fig. 3 and Table 3, for Bm=0, The pressure 
drop, Fp, and the viscous drag force, Fμ, compress the 
ferrofluid tip pushing it downstream. The interfacial 
tension, Fσ, on the other hand, prevents the tip from 
moving forward. Since Fμ is proportional to the tip area 
and the velocity gradient. Therefore, the smaller droplet 
tip curvature at the beginning of the process leads to 
larger capillary forces, and higher pressure is required to 
move the tip through the connecting neck. The throat is 
then blocked as the dispersed phase progresses and the 
velocities inside the throat move up instead of 
downstream. Thus, Fp escalates dramatically outside the 
stream and the tip is pushed further. These interactions 
occur rapidly and finally, the high thread curvature 
reduces Fσ. Since the high Fp is present, the stretching 
of the ferrofluid from opposite directions continues until 
Fσ is no longer sufficient and the tip thread separates, 
forming a droplet. 

When the uniform magnetic field is applied, the 
droplet formation involves an additional magnetic force, 
Fm, on the tip of the dispersed phase. The results show 
that all separations require more time. The thin thread is 
stretched more. Thus, it is longer and the tip is no longer 
spherical due to its lower interfacial tension. The 
pressure difference heightens gradually and larger 
elliptical droplets are formed with the same mechanism 
in a longer time. The Carreau dispersed fluid was 
explored next as in Fig. 3. For Bm=0 the droplets 
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Bm=0.1 larger volumes were achieved with less time. 
Since the stretching is more intense in higher magnetic 
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Table 2. dimensionless and separation times of the 
dispersed fluid models with/without the magnetic field. 

 Newtonian 
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n=0.3 n=0.6 n=1.3 
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V* 0.655 0.781 0.651 0.839 1.561 0.836 0.729 0.697 
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The Power-law fluid was finally investigated for 
Bm=0.1 (Fig. 4). The results show that different n values 
have a rather similar separation time as the Carreau 
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1. Introduction 
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The droplet formation in a flow-focusing configuration 
was investigated with/without a magnetic field. The 
computational domain illustrated in Fig. 1, consists of 
immiscible continuous and dispersed fluids entering the 
side and main-channel, respectively. The governing 
equations are the continuity and momentum in transient 
form while the non-Newtonian shear stress changes 
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Due to the symmetric flow and geometry, only 1/4 
of the domain is calculated reducing the computations. 
The no-slip walls and outlet output boundary conditions 
were applied. Magnetic body force is defined on the 
interface as the last right-side phrase of Eq. (2) where μ0 
is the free space permeability constant, H the magnetic 
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used indicating the effect of the magnetic field along 
with the dimensionless numbers described in Eq. (6). 
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where μ1 is the dispersed phase viscosity and μ2, ρ2, u2 
define the continuous phase viscosity, density, and 
velocity, respectively. σ defines the interfacial tension of 
phases. The continuous phase is Newtonian, while 
Newtonian, non-Newtonian Carreau, and power models 
have been used for the dispersed phase viscosity models 
as: 
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where η∞ is the infinite-plane shear viscosity, Δη its 
difference with zero-plane viscosity. λ, a and k denote 
the time and power-law index (a=-(n-1)/2) and a 
measure of mean viscosity, respectively. Table 1 
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coupling method, PREssure STaggering Option 
(PRESTO) pressure discretization, momentum second-
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employed. In the numerical algorithm, the magnetic 
volume force is added to the main code via a user 
function written in the C programming language (Fig. 
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then blocked as the dispersed phase progresses and the 
velocities inside the throat move up instead of 
downstream. Thus, Fp escalates dramatically outside the 
stream and the tip is pushed further. These interactions 
occur rapidly and finally, the high thread curvature 
reduces Fσ. Since the high Fp is present, the stretching 
of the ferrofluid from opposite directions continues until 
Fσ is no longer sufficient and the tip thread separates, 
forming a droplet. 

When the uniform magnetic field is applied, the 
droplet formation involves an additional magnetic force, 
Fm, on the tip of the dispersed phase. The results show 
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 Newtonian 
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droplet tip curvature at the beginning of the process leads to 
larger capillary forces, and higher pressure is required to 
move the tip through the connecting neck. The throat is then 
blocked as the dispersed phase progresses and the velocities 
inside the throat move up instead of downstream. Thus, Fp 
escalates dramatically outside the stream and the tip is pushed 
further. These interactions occur rapidly and finally, the high 
thread curvature reduces Fσ. Since the high Fp is present, the 
stretching of the ferrofluid from opposite directions continues 
until Fσ is no longer sufficient and the tip thread separates, 
forming a droplet.

When the uniform magnetic field is applied, the droplet 
formation involves an additional magnetic force, Fm, on 
the tip of the dispersed phase. The results show that all 
separations require more time. The thin thread is stretched 
more. Thus, it is longer and the tip is no longer spherical 
due to its lower interfacial tension. The pressure difference 
heightens gradually and larger elliptical droplets are formed 
with the same mechanism in a longer time. The Carreau 

dispersed fluid was explored next as in Fig. 3. For Bm=0 the 
droplets reached a similar volume in a shorter time while for 
Bm=0.1 larger volumes were achieved with less time. Since 
the stretching is more intense in higher magnetic fields, the 
almost double Bm created 86% growth in the droplet volume. 
Larger Bm, also reduces the pressure drop in addition to 
prolonging the time in which this pressure is reached.

The Power-law fluid was finally investigated for Bm=0.1 
(Fig. 4). The results show that different n values have a 
rather similar separation time as the Carreau model. Thus, its 
influence on separation time is insignificant. As n is increased, 
the volume experiences change as the function given in Fig. 5

4- Conclusion
In this study, the external magnetic field’s effect on the 

process of flow-focusing droplet formation has been studied 
numerically. Simulations have been performed for different 
values of the Bond number and three different Viscosity 
models. The droplet size, separation time, and pressure 
differences are compared. The results show that the flow is 
under Fμ, Fp, Fσ, and the additional Fm when the magnetic 
field is present. The magnetic force stretches the thread and 
lowers the pressure drop which results in the formation of 
larger droplets in longer times. The field affects the Carreau 
fluid more than the Newtonian fluid. For Bm=0.1, the Power-
law model investigation also showed a volume reduction and 
enhancement for n<1.1 and n>1.1, respectively.
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the interface tracing was calculated as: 
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The Semi-Implicit Method for Pressure Linked 
Equations-Consistent (SIMPLEC) pressure-velocity 
coupling method, PREssure STaggering Option 
(PRESTO) pressure discretization, momentum second-
order upwind technique, volume fraction geometric 
reconstruction, and implicit temporal integration were 
employed. In the numerical algorithm, the magnetic 
volume force is added to the main code via a user 
function written in the C programming language (Fig. 
2). 
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Fig. 3. Droplet formation process. a, b) Newtonian dispersed fluid 
for Bm=0,0.1. c, d, e) Carreau dispersed fluid for Bm=0,0.1,0.2.

Table 2. dimensionless and separation times of the dispersed fluid 
models with/without the magnetic field.

3 

illustrates the fluid properties and other flow conditions 
applied. The dimensionless numbers for the present 
study for the continuous phase, Cac = 2.22 ×10-4, and 
Rec = 2.78 ×10-4, are constant. 

Table 1.Material properties and model assumptions with 
σ=13 mN/m, μc=2 mPa.s, ρc=1100, ρd=960 kg/m3, Qc=10 

and Qd=5 μl/h. 

 η [mPa.s] Bm Red × 
104 

Cad × 
104 

D
is

pe
rs

ed
 p

ha
se

 
(fe

rro
flu

id
) 

μ=96 0 76.4 0.023 0.1 

3.5+52.5/ (1+(3.313 γ ̇)2)0.3216 
0 

2.73 0.648 0.1 
0.2 

0.42γ ̇n-1 
n=0.3 

0.1 
1.24 1.43 

n=0.61 1.802 2.20 
n=1.3 0.187 9.43 

The 3D-Finite Volume (FV) method has been 
employed to solve the governing equations. In addition, 
fluid density was assumed to change linearly by  and 
the interface tracing was calculated as: 
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The Semi-Implicit Method for Pressure Linked 
Equations-Consistent (SIMPLEC) pressure-velocity 
coupling method, PREssure STaggering Option 
(PRESTO) pressure discretization, momentum second-
order upwind technique, volume fraction geometric 
reconstruction, and implicit temporal integration were 
employed. In the numerical algorithm, the magnetic 
volume force is added to the main code via a user 
function written in the C programming language (Fig. 
2). 
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droplet formation involves an additional magnetic force, 
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The Power-law fluid was finally investigated for 
Bm=0.1 (Fig. 4). The results show that different n values 
have a rather similar separation time as the Carreau 
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studied numerically. Simulations have been performed 
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time, and pressure differences are compared. The results 
show that the flow is under Fμ, Fp, Fσ, and the additional 
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