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ABSTRACT: Due to the volume and mass limits of the small electronic devices, thin flat heat pipes 
are an ideal solution for the efficient transfer and dissipation of heat. The performance of thin heat pipes 
is heavily dependent on wick structure characteristics. In this research, the thermal performance of thin 
flat heat pipes with hybrid and grooved wick for different heat inputs were studied numerically, and their 
heat transfer characteristics were compared. The trends of various parameters such as wall temperature, 
maximum axial velocity, mass transfer at the liquid-vapor interface, system pressure, and thermal 
resistance on the thermal performance of the thin flat heat pipe with hybrid and groove wicks were 
analyzed. The numerical simulation has been done using a two‐dimensional unsteady incompressible 
laminar flow. Results indicated that the evaporation section temperature of hybrid wick thin flat heat 
pipe is significantly lower than the corresponding value of grooves heat pipe. It was also observed 
that with increasing heat input, the thermal resistance of hybrid wick thin flat heat pipe decreased and 
it has excellent performance compared to the grooved wick. For heat fluxes of 10, 20, and 30 W, the 
performance of the thin flat heat pipe with hybrid wick compared to grooved wick is improved by 
3.59%, 20.38%, and 28.57%, respectively. Therefore, the thermal performance improvement of the thin 
flat heat pipe with the hybrid wick was more significant. This improvement is more considerable for 
higher heat fluxes..
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1- Introduction
Because of the increasing heat flux requirements and 

thermal limits in many industrial processes, there has 
been notable interest in using heat pipes for thermal 
management [1]. Heat pipes have been shown to be among 
the most efficient passive cooling solutions for electronic 
devices, for example, in Central Process Unit (CPU) [2], 
Microelectromechanical Systems (MEMS) [3], spacecraft 
[4], satellite [5], and so on. A nearly uniform temperature is 
maintained throughout the device by using phase change in 
a heat pipe.

Due to the volume and mass limits of the small electronic 
devices, thin flat heat pipes are an ideal solution for the 
efficient transfer and dissipation of heat. However, unlike 
traditional heat pipes, the performance of thin heat pipes is 
heavily dependent on wick structure characteristics [6]. The 
wick structure is the key component of a heat pipe because it 
provides capillary force and flow paths for the circulation of 
the working fluid. The two most frequent wick forms utilized 
inside the wick heat pipe are homogeneous wick and hybrid 
wick. Each wick has its own characteristics. For example, 
a grooved wick has high permeability and low capillary 
pressure, while sintered wick has large capillary pressure 

and low permeability [7]. However, large capillary pressure 
and high permeability cannot be satisfied by a homogeneous 
wick. Thus, it is necessary to investigate the hybrid wick 
structure.

In the present study, the thermal performance of Thin Flat 
Heat Pipes (TFHP) with hybrid and groove wick structures 
for different heat inputs are studied numerically, and their 
heat transfer characteristics are compared. The trends of 
various parameters such as wall temperature, maximum axial 
velocity, mass transfer at the liquid-vapor interface, system 
pressure, and thermal resistance on the thermal performance 
of the TFHPs with hybrid and groove wick structures are 
analyzed.

2- Model Description
The heat pipe dimensions were chosen to correspond with 

an actual heat pipe [8]. As illustrated in Fig. 1, the overall 
dimensions of the TFHP are 225×10.5×4.5 mm3, and the 
lengths of the evaporator, adiabatic, and condenser sections 
are 30, 100, and 95 mm, respectively. Since the external 
applied heating and cooling are symmetric, the 3-D heat pipe 
can be simplified as a 2-D model, a cross section was selected 
in the present study as shown by dashed lines in Fig.1. The 
detailed 2-D model and boundary conditions are detailed in 
Fig. 2 and Table 1.*Corresponding author’s email: s_noori@aut.ac.ir
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 The heat pipe geometry consists of three different regions: 
Wall, Wick, and Vapor domains. The wall and wick are made of 
copper and the working fluid is water. The hybrid wick consists 
of three layers: two layers of woven mesh and the outer layer of 
the grooved structure. The hybrid wicks consist of two different 
structures and cannot be treated homogeneous, therefore, the 
effective thermal and viscous properties of hybrid wicks were 
first calculated and the entire wick structure was then simplified 
as a uniform porous media.

The thermophysical properties of the wall, wick, and vapor 
core are listed in Table 2. The properties for the hybrid mesh 
were calculated according to Refs. [9, 10]. The heat pipe is 
simulated with different heat inputs ranging from 2.5 W to 30 W. 
The coolant water temperature and the heat transfer coefficient 
on the condenser side are 21℃ and 1300 W/m2K, respectively. 
The initial temperature all through the heat pipe is 21℃ and the 
vapor is assumed to be saturated.

3-  Results and Discussion
Fig. 3 illustrates the wall temperature distribution of hybrid 

and grooves heat pipe for different heat inputs in a steady state. 
As shown, the condensation section temperature stays the 
same for hybrid and grooves heat pipe while the evaporation 
section temperature of the hybrid wick heat pipe is significantly 
lower than the corresponding value of grooves heat pipe. Also, 
the effectiveness of hybrid wick, in terms of the temperature 
difference between the condenser and evaporator, increases as 
heat flux increases.

Thermal resistances of hybrid and grooves heat pipe is 
depicted in Fig. 4 for different heat inputs. It was also observed 
that with increasing heat input, the thermal resistance of 
hybrid wick TFHP decreased and it has excellent performance 
compared to the grooved wick. For heat fluxes of 10, 20, and 
30 W, the performance of the TFHP with hybrid wick compared 
to grooved wick is improved by 3.59%, 20.38%, and 28.57%, 
respectively. Therefore, the thermal performance improvement 
of the TFHP with the hybrid wick was more significant.

 

4-  Conclusions 
The thermal performance of TFHP with hybrid and grooved 

wick for different heat inputs were studied numerically, and their 
heat transfer characteristics were compared to each other. The 
results show that the use of a hybrid wick structure significantly 

Fig. 2. Detailed boundary conditions of the 2-D model
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4. Conclusions 

The thermal performance of TFHP with hybrid and 
grooved wick for different heat inputs were studied 
numerically, and their heat transfer characteristics were 
compared to each other. The results show that the use of 
a hybrid wick structure significantly improves the 
evaporation section temperature and thermal resistance. 
This improvement is more considerable for higher heat 
fluxes. 
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improves the evaporation section temperature and thermal 
resistance. This improvement is more considerable for higher 
heat fluxes.
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The thermal performance of TFHP with hybrid and 
grooved wick for different heat inputs were studied 
numerically, and their heat transfer characteristics were 
compared to each other. The results show that the use of 
a hybrid wick structure significantly improves the 
evaporation section temperature and thermal resistance. 
This improvement is more considerable for higher heat 
fluxes. 
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