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ABSTRACT: Nowadays, due to the extensive application of renewable-based cogeneration systems and 
also the economic and environmental necessities, their design and thermodynamic analysis have been 
conducted by many scientists. In this way, a novel, simple, and practical combined power and hydrogen 
cogeneration unit have been designed in the present study in which there are gas turbine, gasifier, 
transcritical Rankine cycle, and proton exchange membrane electrolyzer. This system has been analyzed 
from the first and second laws of thermodynamics by an engineering equation solver. The proposed 
system is able to generate power and hydrogen simultaneously for users. The power and hydrogen 
production capacities of the system are 3.92 MW and 608.8 cubic meters per hour, respectively, which 
consume biomass of about 1.155 kg/s. The energy utilization factor and exergy efficiency of the system 
is 34.71 % and 29.44 %, respectively. It can be seen that the overall exergy destruction of the system is 
11854 kW, in which gasifier, gas turbine, and combustion chamber have the highest irreversibilities. In 
addition, it can be concluded that the exergy efficiency of condenser and heat exchanger 3 are the lowest 
ones among other types of equipment. According to the parametric studies, it was found that increasing 
the inlet temperature of the gas turbine has a positive effect, and increasing the maximum pressure of 
the transcritical carbon dioxide cycle has a negative effect on the energy utilization factor and the exergy 
efficiency of the system..
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1- Introduction
Energy is an essential ingredient of our developed life and 

is conceived as one of the main elements to achieve common 
economic, social, and environmental goals to accomplish 
sustainable development in global energy infrastructure. 
Several factors, including rapid growth in population and 
increasing demand for energy services, contribute to the 
uptake of energy production. To address this, many efforts 
have been made, among which employing new energy 
sources and cogeneration systems are perceived as viable 
alternatives to the use of fossil fuels as well as conventional 
energy systems [1].

In recent years, many studies have been conducted on 
cogeneration systems and the use of biomass as fuel. Fiaschi 
and Carta [2] analyzed the gas turbine power plant and 
concluded that when biomass combustion increases by 15 
to 30% compared to the base state of the gas turbine, carbon 
dioxide production decreases by 30 to 50%. Zhao et al. [3] 
found that by gasifying municipal solid waste with air in a 
hot air furnace, the heating value of the product gas increases 
with increasing gasification for a constant equivalence ratio.

An important innovation of this system is receiving heat 
from the air cooler in the gas turbine cycle and using it for 

heating transcritical carbon dioxide, which improves the 
overall performance. Therefore, it can be concluded that 
the proposed system has not been designed and evaluated 
in similar works and has a good performance in terms of 
energy, exergy, economy, and environment. Furthermore, 
the proposed system contains two small compressors instead 
of the main compressor, and there is an intercooler of air 
between two compressors, which contributes to reducing 
the power consumption of compressors. Additionally, the 
transcritical carbon dioxide fluid is heated three times in first, 
second, and internal heat exchangers, so this kind of design 
in the transcritical Rankine cycle enhances the turbine inlet 
temperature and the electricity generation.

2- Methodology
The schematic of the proposed system of simultaneous 

generation of electricity and hydrogen is shown in Fig. 1. The 
system uses municipal solid waste as input fuel and consists 
of a gasifier, a Brayton cycle, a carbon dioxide Rankine 
cycle, and a proton exchange membrane electrolyzer.

To model the proposed system, each component of the 
system is considered as a control volume, and assuming the 
steady-state, the laws of conservation of mass and energy 
and the second law of thermodynamics are applied to it. 
The laws of conservation of mass and energy are expressed *Corresponding author’s email: a.farajollahi@sharif.edu
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according to Eqs. (1) and (2):
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It should be noted that the net output power of the cycle and exergy of the Proton Exchange Membrane Electrolyzer 

(PEME) cycle product is calculated according to Eqs. (45) and (46), respectively: 
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3. Results and Discussion 
In this section, the results obtained for the system with a power generation capacity of 3.92 MW are given. The amount 

of exergy destruction in each component of the system under basic operating conditions is shown in Fig. 2. It can be seen 

from the figure that the amount of exergy destruction of the whole system is equal to 11854 kW, and the gasifier and the 
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4- Conclusion
In this study, to prevent energy wastage and increase 

efficiency, a system of dual production of power and hydrogen 
with a new, simple, and at the same time, practical design 
is presented, which includes a gasifier, a Brayton cycle, a 
transcritical carbon dioxide cycle, and a proton exchange 
membrane electrolyzer. This system, while generating power, 
recovers waste heat to provide the hydrogen needed by the 
consumer.

The system is capable of producing 3.92 MW of electricity 
and 608.8 m3/h hydrogen gas. The fuel consumption of the 
cycle is 1.155 kg/s. The EUF and exergy efficiency of the 
system is 34.71% and 29.44%, respectively. The amount of 
exergy destruction of the whole system is 11854 kW. The 
combustion chamber and gasifier have the highest rate of 
exergy destruction. This is due to the high chemical reactions 
in the combustion chamber and gasifier. The exergy efficiency 
of the condenser and heat exchanger 3 has the lowest values 
because the temperature difference between the working fluid 
of these components and the cold inlet water is higher than 
the other components, and as expected, the high-temperature 
difference causes these components to be inefficient. 

In conclusion, the dual generation system proposed in this 
paper can produce clean electricity and hydrogen due to the 
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consumption of biomass. The strengths of this system are 
consumption of municipal waste as the main fuel, simplicity 
in design, as well as good productivity of hydrogen gas. 
The weaknesses of this system are also examined from the 
perspective of the second law of thermodynamics so that 
other researchers can conduct new studies on them. Also, in 
future works, the economic and environmental performance 
of the current system can be examined in order to obtain more 
reliable results and conclusions.
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