
Amirkabir Journal of Mechanical Engineering

Amirkabir J. Mech. Eng., 53(12) (2022) 1427-1430
DOI: 10.22060/mej.2021.19697.7090

Numerical Simulation of Elastoplastic Behavior and Damage Evolution at Various 
Stress Triaxiality
M. Ansari, M. Ganjiani*, A. Lalegani 

Department of Engineering, University of Tehran, Tehran, Iran

ABSTRACT: The theory of continuum damage mechanics with a phenomenological approach is able 
to simulate phenomena such as soft strain, local necking of materials, and their failure. Stress triaxiality 
is defined as the stress state in a material that strongly affects the ductile failure phenomena. In this study, 
two damage models, Ganjiani and Bonora, are chosen to simulate and compare the elastoplastic behavior 
as well as damage evolution of some metals. These damage models are sensitive to the stress triaxiality. 
In order to validate the capability of the models in structural response, the proposed model has been 
implemented into user-defined subroutines VUMAT in the finite element program ABAQUS/Explicit. 
For this purpose, the explicit stress integration algorithms of the model have been explained. The 
model has been validated by comparing the predicted results with experimental data. The simulations 
are performed for steel 1045, aluminum 2024-T351, and steel HY130. The details of the integration 
algorithm in the framework of the explicit scheme are presented. Also, the model is developed in the large 
strain deformation. For the determination of the constants in the models, the stress-strain, the damage-
strain, and the fracture strain-triaxiality curves are used. The predicted curves of load-displacement from 
simulation have good agreement with corresponding experimental data. 
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1. INTRODUCTION
Continuum Damage Mechanics (CDM) as a 

phenomenological approach is widely used in a coupled 
or uncoupled scheme to join the (visco) plasticity theory 
to simulate well the strain softening, damage localization, 
and fracture phenomena in materials, [for example [1, 2-4]. 
Experimental evidence has shown the key factor of stress 
triaxiality, which replies the mean stress, on fracture strain. 
Besides that, the stress triaxiality has been found to be not the 
single factor to affect the ductile damage evolution, especially 
under shear loading conditions. In order to consider the effect 
of shear loading on the ductile fracture, another key factor 
as the Lode angle parameter was proposed. This parameter 
is actually related to the third deviatoric stress invariant 3J
. Many ductile fracture models have been proposed in the 
literature, which used the definition of damage to predict 
fracture strain [4-10]. The original Gurson–Tvergaard–
Needleman (GTN) model [11, 12] predicts no damage change 
with strain under zero stress triaxiality except when voids 
are nucleated. On the other hand, this model has limitations 
which ignore the fracture mechanism due to shear. Therefore, 
many authors attempt to modify the limitations of this model. 

In this study, two damage models, Ganjiani and Bonora, 
are chosen to simulate and compare the elastoplastic behavior 
as well as damage evolution of some metals. The simulations 

are performed for steel 1045, aluminum 2024-T351, and 
steel HY130. The details of the integration algorithm in the 
framework of the explicit scheme are presented.

2. METHODOLOGY
The stress triaxiality 
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+
= + −

+          
    

(

1) 
where  is the equivalent plastic and the parameters 

, ,  and  are material constants and the 

superscript “ ” refers to the reference test which is 
used to identify the parameters involved in the model. 

 is the plastic hardening which is selected as 

+   . 

2.2. Bonora model 

The model of Bonora can be presented as follows: 

−= − −
   

  
    

 (2) 

In which The ( ) ( )= + + −  is the 

function that accounts for stress triaxiality effects. , 

, ,  are constants.  is thresholds strain and 

 is the fracture strain at the uniaxial tension test. 

3. Results and Discussion  

The simulations are performed for steel 1045, aluminum 
2024-T351, and steel HY130. The material properties 
are calibrated. The tension test is simulated for steel 
1045 and aluminum 2024-T351, and the three-point 
bending test is simulated for steel HY130. The force-
displacement of these simulations is presented in Figs. 1 
to 3.  

 
Fig. 1. The comparison of force-displacement 
between simulation and the result of Ref. [34] for 
steel 1045. 

 
Fig. 2. The comparison of force-displacement 
between simulation and the result of Ref. [44] for 
aluminum 2024-T351 
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used to identify the parameters involved in the model. 

 is the plastic hardening which is selected as 

+   . 

2.2. Bonora model 

The model of Bonora can be presented as follows: 

−= − −
   

  
    

 (2) 

In which The ( ) ( )= + + −  is the 

function that accounts for stress triaxiality effects. , 

, ,  are constants.  is thresholds strain and 

 is the fracture strain at the uniaxial tension test. 

3. Results and Discussion  

The simulations are performed for steel 1045, aluminum 
2024-T351, and steel HY130. The material properties 
are calibrated. The tension test is simulated for steel 
1045 and aluminum 2024-T351, and the three-point 
bending test is simulated for steel HY130. The force-
displacement of these simulations is presented in Figs. 1 
to 3.  

 
Fig. 1. The comparison of force-displacement 
between simulation and the result of Ref. [34] for 
steel 1045. 

 
Fig. 2. The comparison of force-displacement 
between simulation and the result of Ref. [44] for 
aluminum 2024-T351 

 is the fracture 
strain at the uniaxial tension test.

3. RESULTS AND DISCUSSION 
The simulations are performed for steel 1045, aluminum 

2024-T351, and steel HY130. The material properties are 
calibrated. The tension test is simulated for steel 1045 and 
aluminum 2024-T351, and the three-point bending test is 
simulated for steel HY130. The force-displacement of these 
simulations is presented in Figs. 1 to 3. 

The finite element analysis is carried out to show the 
capability of the model at a structural scale. As indicated in 
these figures, the predicted results have good agreement

4. CONCLUSIONS
In this paper, a fracture model has been presented in the 

framework of Continuum Damage Mechanics. Two damage 
models, Ganjiani and Bonora, are chosen to simulate. The 
simulations are performed for steel 1045, aluminum 2024-
T351, and steel HY130. The details of the integration 
algorithm in the framework of the explicit scheme are 
presented. The cures of load-displacement from simulation 
have good agreement with corresponding experiment ones
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