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Crystal Plasticity Finite Element Study of Necking Behavior of Aluminum Alloy 
Sheet Subject to Thickness-Stress
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ABSTRACT: This paper investigates the effect of thickness stress on the formability of aluminum alloy 
metal sheets using crystal plasticity finite element analysis. A self-hardening behavior is considered 
for the slip systems. Further, for the prediction of necking initiation and growth, the maximum shear 
strain criterion is used for damage initiation and evolution. In order to implement the model in Abaqus 
finite element package, a VUMAT was developed based on the discretized equations and forward Euler 
integration scheme. After verification of the developed code, the parameters of the model were calibrated 
against the tensile test results. For simulating tensile test of 1 mm thick sheet, a representative volume of 
3×1.5×0.5 mm3،was partitioned into 14790 grains through a python code in ABAQUS/CAE environment 
and then discretized using 50 μm tetrahedral linear elements. Using the experimental data available in 
the literature and considering appropriate texture for the simulation domain, the crystal orientations were 
assigned through Euler angles. Then, tensile tests were performed on the sample in the presence of the 
thickness pressure stress. The results show that application of the through thickness stress increases the 
strain corresponding to the necking initiation and thus postpones necking. Correspondingly, a decrease 
in tensile load is observed in this case.
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1. INTRODUCTION
Sheet metal formability is usually studied through a 

plane strain analysis. However, in forming processes like 
hydroforming, electromagnetic forming, and explosive 
forming, through thickness stress cannot be neglected. 
Therefore, in recent researches, the effect of thickness stress 
is considered [1, 2]. In addition, the Crystal Plasticity Finite 
Element Method (CPFEM) has been used for the analysis of 
the necking behavior of metal sheets [3]. In this paper, the 
effect of through thickness stress on the necking behavior of 
aluminum alloy sheet metal is studied based on 3D CPFEM 
analyses. 

2. CONSTITUTIVE EQUATIONS AND FINITE 
ELEMENT MODEL

Elastic and plastic deformations of crystalline materials 
may be described through multiplicative decomposition of 
deformation gradient F, which leads to additive decomposition 
of the velocity gradient L. Plastic velocity gradient Lp 
associated with the plastic slip rate is described as
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where, αs and αm  are the slip and normal directions of 

the slip system α, respectively. The symmetric and skew-
symmetric parts of pL are described as 
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A damage model based on the maximum shear strain 
 is employed according to Eq. (4)
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in which, m,ini 0.4γ = , m,max 0.4376γ =  and M = 2. The 
equivalent stress in the damaged Dσ  and undamaged σ  
states are related through

( , ) (1 ) ( )σ ε σ ε= −D D D � (5)

In each increment, the trial resolved shear stress Tατ  for 
slip system α is calculated from
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In Eq. (6), αR is a rotation tensor which depends on αs , 
αm , stress, and elastic moduli [3]. 
In addition, a rate dependent behavior is considered for 

the calculation of the resolved shear stress according to 
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where, m and 0γ  are constants taken as 0.001 and 0g  
is the strength of slip system which evolves according to 

0 0.24151.5(0.001 )g = + Γ . Γ  is the accumulated slip on all 
systems. Assuming a constant damage variable D within 
the current increment, solving the following equation, the 
stresses can be calculated. 
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Finally, damage variable D and subsequently, the resolved 
shear stresses are updated.
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Fig. 1 depicts the representative volume element selected 
at the center of a 1 mm thick sheet metal specimen. To reduce 
the calculation cost, half of the sheet thickness considered is 
in the computation domain. The boundary conditions applied 
are given in the figure. The domain is partitioned into 14790 
diamond shape grains and then discretized using tetrahedral 
elements with an average size of 50 μm. According to the 
texture of the sheet metal [4], the orientation of grains is 
randomly selected from 1000 orientations generated using 
MTEX in Matlab software (Fig. 2).

The incremental constitutive equations are coded in a 
VUMAT subroutine and implemented in Abaqus/Explicit 
dynamics solver. The parameters of the model are calibrated 
against the experimental results of [3]. 

3. RESULTS AND DISCUSSION
Fig. 3 shows snapshots of the distribution of Mises 

stress during tensile loading. Due to a mismatch in the 
orientation of grains, stress concentration is observed at the 
grain boundaries. With an increase in the gage length strain 
εg deformation damage evolves and is accumulated (Fig. 4). 

 
Fig. 1. Representative volume element of the sheet metal subject to uniaxial load 
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Fig. 1. Representative volume element of the sheet metal subject 
to uniaxial load

 

Fig. 3. Equivalent Mises stress distribution in the course of uniaxial tensile loading 

   

Fig. 3. Equivalent Mises stress distribution in the course of 
uniaxial tensile loading

 

Fig. 4. Damage variable D distribution during uniaxial tensile loading 

   

Fig. 4. Damage variable D distribution during uniaxial tensile 
loading

 

Fig. 2. Pole figures of (1 1 0) and (1 1 1) planes used in the calculation domain 

   

Fig. 2. Pole figures of (1 1 0) and (1 1 1) planes used in the 
calculation domain
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Consequently, deformation is concentrated and a neck is 
formed at an angle to the loading direction.  In this region, 
Mises stress is reduced significantly.

The effect of through thickness stress on the force-
displacement curve is shown in Fig. 5. It is observed that with 
an increase in the pressure applied in the thickness direction, 
the tensile load decreases, while the strain corresponding 
to necking increases. These results are in line with those 
reported in [1] for aluminum alloy AA6011 obtained through 
M-K analysis.

4. CONCLUSIONS
In this paper, based on the 3D finite element crystal 

plasticity method, the effect of through thickness stress on 
the necking behavior of the aluminum alloy sheet metal is 
investigated. The constitutive model incorporates a rate 
dependent crystal behavior and a damage model based on 
maximum shear strain. Simulation of the sheet metal tensile 
loading subjected to through thickness stress was performed. 

 

Fig. 5. Comparison of the force-displacement curves obtained under various through thickness pressures  
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The results revealed that the application of the thickness stress 
reduces the tensile force while increasing the necking strain. 
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