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ABSTRACT: In the present study, in order to fabricate AC electroosmotic micropumps, the 
improvement of geometrical parameters of the 3D electrode, such as width, height, and location of 3D 
steps on the base electrodes in one pair, the base electrodes size (symmetric or asymmetric), electrodes 
gap, and also electrical characteristics including voltage and frequency have been investigated. Also, 
the fluid flow (KCl) in the channel was analyzed. The governing equations of fluid flow and electrical 
domain have been solved using the finite element method to investigate the effect of electrode geometry 
on slip velocity, which affects the fluid flow. In order to validate our numerical simulation, this chip is 
fabricated by photolithography method such as deposition of platinum electrodes, creating 3D steps on 
the base electrodes using a polymer, and fabrication of a microchannel. Finally, Our results indicate that 
an optimal design results in a pump with the width (50 µm) and steps height (5 µm) of each electrode 
and their displacement (30 µm) are capable of generating a high velocity, flow rate, and pressure around 
1.77 mm/s, 14.9 ml/min and 74.6 Pa, respectively at a given voltage (2.5 V) and frequency (1 kHz), 
which qualitatively matches the trend observed in the experiment. This design provides an improvement 
in electroosmotic pumping.
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1- Introduction
Microfluidics is a field of study that is limited in the 

control volume of fluids in microchannels. The term 
microfluidics is generalized to the study of the motion of 
colloids, micro-, and nanoparticles. Because the motion of 
fluids and particles are closely related and interact with each 
other [1]. These miniaturized devices are called lab-on-a-chip 
[2]. In the last decade, microfabrication technology has led 
to the use of polymers as a base material for the construction 
of microfluidic devices in a relatively simple way, such as 
injection molding, soft lithography, and so on.

Micropumps are one of the main types of microfluidic 
devices that can be generally divided into two main categories: 
mechanical micropumps and dynamic micropumps [3]. 
Among these mechanisms, the electroosmotic pump is 
an example of a dynamic pump, which provides fluid 
flow through driving ions in the Electric Double Layer 
(EDL), along the interface between the electrolyte and the 
solid surface (channel wall or electrode). Electroosmotic 
micropumps are divided into two categories of alternating and 
direct current. AC Electroosmotic (ACEO) pump compared 
to DC Electroosmotic (DCEO) pump, has a low voltage and 
also less electrolysis, which this study also focused on this 
type of micropump.

Ajdri [4] first theoretically predicted that the asymmetry 

of the electrode array (the width of the electrodes in a pair 
and the distance between them should be different) could be 
used to direct the fluid in a specific direction for pumping. 
An electric field close to the distance between the adjacent 
electrodes acts on suspended charges near the surface of 
the electrode. This force creates vortices at the edges of the 
electrodes, and the size of these vortices depends on the 
width of the electrodes. A larger vortex is created on the 
wide electrode, and the wide electrode dominates the overall 
flow direction. Using the standard model of micropumps 
with planar electrodes, Gao and Li [5] theoretically proposed 
arrays of asymmetric ring electrode pairs in three-dimensional 
cylindrical microchannels that could improve the flow rate. 
There are many designs in which the asymmetry of the 
electrodes induces fluid flow, including asymmetric planar 
electrodes, orthogonal electrodes [6], planar asymmetric 
electrode arrays with pillar electrodes with high aspect ratio 
[7], and three-dimensional electrodes [8] with maximum 
fluid velocities have been reported.

In the present study, using numerical modeling, the first 
two different micropumps including symmetrical planar 
electrode arrays and asymmetric planar electrode arrays 
have been designed. Then, in order to achieve efficient 
pumping with maximum velocity, flow rate, and pressure, the 
effect of steps on each of the base electrodes (symmetrical 
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and asymmetric in each design) is investigated. For this 
purpose (see Fig. 1), the width ( 1L , 2L ) and height ( 1h ,

2h ) of the steps, and their location ( 1S , 2S ) on the base 
electrodes have been improved, which can be considered 
as one of the innovations of this research. To validate the 
numerical simulation, the improved chip was fabricated using 
photolithography, including coating the platinum electrode 
on the glass substrate, creating steps on the electrode using 
polymer, and fabricating a PDMS microchannel (26 mm long 
and 2 mm deep) in the laboratory. In addition, the size of each 
electrode in a pair, in order to symmetry or asymmetry of the 
electrode pair, the gap between each electrode in a pair ( 1G ) 
and the gap between each pair of electrodes ( 2G ), as well as 
electrical characteristics including voltage and frequency are 
also investigated.

Methodology
The numerical model includes two sets of governing 

equations and boundary conditions related to each domain. 
The EDL is in quasi-equilibrium at low voltage and low 
frequencies. After that, the system requires a short time after 
each small change in the system to reach equilibrium. As a 
result, the properties of the system are considered constant. 
Finally, assuming a linear regime for the distribution of 
potential in the bulk of fluid, the electric charge density is 
zero. For small voltages, the concentration of the electrolyte 
(and conductivity) remains almost uniform, and the electric 
field is assumed to be uniform and the Laplace equation 
(Ohm’s law) is established:
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Fig. 1. Schematic of improving the geometry of the 
electrodes in the microchannel 
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angular frequency. Also, the ratio of the diffuse layer 
potential and the total potential of the EDL is shown 
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The incompressible Navier – Stokes equation will be 
used to analyze the fluid flow domain. In addition, 
Reynold’s Number is very small in microchannel thus, 
the governing equation is: 
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fluid velocity vector, and P is the pressure. 
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mm/s, 14.9 ml/min, and 74.6 Pa, respectively. Experimental 
results and numerical simulations have a difference of 82 
2.82% in terms of maximum velocity in 2.5 V. Also, in terms 
of maximum pressure at the same voltage, a difference of 
2.95% has been observed. A good agreement between can be 
seen in the numerical and experimental results.
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