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ABSTRACT: In recent years, unmanned vehicles especially unmanned aerial vehicles have become 
very popular in many countries in the military, industrial and scientific research fields because of 
their high speed and maneuverability. This research investigates a compound system consisting of a 
quadrotor and a series of a robotic manipulators. Joining these two systems aims at combining the 
agility and flexibility of multi-rotor unmanned aerial vehicles and the dexterity of robotic arms. This 
combination makes unmanned aerial vehicles able to perform more complicated tasks. In this thesis, the 
first kinematics and dynamics of a quadrotor are written using quaternion and Newton-Euler equations. 
Next, a 3-degree of freedom robotic arm that is connected to the bottom of a quadrotor is considered 
and its kinematics and dynamics are derived using Newton-Euler recursive algorithm. To control the 
quadrotor, two inner-outer loops are used for its orientation and position respectively. Toque due to arm 
operation or exerted force to its end effector is estimated using Kalman filter and is fed into quadrotor 
inner control loop. For trajectory tracking of an arm end effector, an inverse kinematic algorithm is used. 
The compound system including unmanned aerial vehicles and arm is simulated with different scenarios 
to verify its performance.
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1- Introduction
The use of drones has increased dramatically in various 

fields in recent years. Unmanned Aerial Vehicles (UAVs) 
are divided into different categories based on application, 
size, operating altitude, speed, and configuration. UAV 
applications cover a wide range of military and civilian fields. 
The use of several UAVs in disaster management is discussed 
in Ref. [1]. One of the most popular types of drones is the 
quadrotor, which includes a simple set of four motors with 
propellers.

Due to the fact that the flight dynamics of quadrotors 
include six degrees of freedom in space, the use of four 
independent actuators to control the flight of this system leads 
to under actuation. A common method to control quadrotors 
is to use hierarchical architecture including inner and outer 
loops [2].

The use of a robotic arm attached to the drone increases 
the degrees of freedom of the end-effector. Another advantage 
is that there is no need for human intervention when picking 
up and placing objects. A lot of research has been done on 
the control of arm-equipped drones. However, a few of the 
proposed controllers include the estimation of forces and 
torques applied to the quadrotor due to arm operation.

The purpose of this paper is to present an algorithm for 
controlling a quadrotor with a three-degree-of-freedom series 

robotic arm mounted at the bottom. The control purpose of the 
system is desired path following for the quadrotor mass center 
and the end-effector of the arm. Also, disturbing torques and 
forces acting on the quadrotor due to the performed tasks are 
estimated for an improved response.

2- Methodology
2- 1- Kinematics and dynamics of the system

The method used to describe the quadrotor dynamics in 
this study is Newton-Euler and the quaternion vector was 
used to describe the quadrotor orientation in space. The arm 
dynamics equations were also obtained using the Newton-
Euler recursive algorithm. The material of the quadrotor 
structure was assumed to be rigid and the shape of the 
structure is cross-shaped and symmetrical. The robotic arm 
consists of three consecutive degrees of rotational freedom 
and the command of the arm joints is performed by servo 
motors.

The translational kinematics and dynamics of the 
quadrotor in the inertial coordinates are written as follows:
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For arm dynamics, starting from the last arm (i = 2 ‚1‚ 
0) we have 
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In these equations, θi is the angle of the joint i, 𝜔𝜔𝑖𝑖+1
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previous link to the link i. 

2.2. Inner loop controller 
In this section, the control law used to stabilize the 

rotational motion and track the desired path is presented. 
The control law is given by Eq. (5) [4]. It can be proved 
that the closed-loop system including the rotational 
dynamics of the quadrotor and the proposed control law 
is Locally Asymptotically Stable (LAS). 
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is the component i of the quadrotor angular velocity 
vector, and λ and 𝜌𝜌𝑖𝑖 are the positive control coefficients. 
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Where the vector p  represents the three components 
of the position of the quadrotor in the inertial coordinate, V 
represents the speed of the quadrotor, m represents the mass of 
the quadrotor and F is the vector of the thrust force produced 
by the blades. C is the matrix converting the coordinates from 
inertia to the body. Rotational dynamics of the quadrotor in 
the body coordinates are written as follows:
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that the closed-loop system including the rotational 
dynamics of the quadrotor and the proposed control law 
is Locally Asymptotically Stable (LAS). 
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vector, and λ and 𝜌𝜌𝑖𝑖 are the positive control coefficients. 
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For arm dynamics, starting from the last arm (i = 2 ‚1‚ 0) 
we have
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1. Introduction 

The use of drones has increased dramatically in 
various fields in recent years. Unmanned Aerial Vehicles 
(UAVs) are divided into different categories based on 
application, size, operating altitude, speed, and 
configuration. UAV applications cover a wide range of 
military and civilian fields. The use of several UAVs in 
disaster management is discussed in Ref. [1]. One of the 
most popular types of drones is the quadrotor, which 
includes a simple set of four motors with propellers. 

Due to the fact that the flight dynamics of quadrotors 
include six degrees of freedom in space, the use of four 
independent actuators to control the flight of this system 
leads to under actuation. A common method to control 
quadrotors is to use hierarchical architecture including 
inner and outer loops [2]. 

The use of a robotic arm attached to the drone 
increases the degrees of freedom of the end-effector. 
Another advantage is that there is no need for human 
intervention when picking up and placing objects. A lot 
of research has been done on the control of arm-equipped 
drones. However, a few of the proposed controllers 
include the estimation of forces and torques applied to the 
quadrotor due to arm operation. 

The purpose of this paper is to present an algorithm 
for controlling a quadrotor with a three-degree-of-
freedom series robotic arm mounted at the bottom. The 
control purpose of the system is desired path following 
for the quadrotor mass center and the end-effector of the 
arm. Also, disturbing torques and forces acting on the 
quadrotor due to the performed tasks are estimated for an 
improved response. 

2. Methodology 
2.1. Kinematics and dynamics of the system 

The method used to describe the quadrotor dynamics 
in this study is Newton-Euler and the quaternion vector 
was used to describe the quadrotor orientation in space. 
The arm dynamics equations were also obtained using the 
Newton-Euler recursive algorithm. The material of the 
quadrotor structure was assumed to be rigid and the shape 
of the structure is cross-shaped and symmetrical. The 
robotic arm consists of three consecutive degrees of 
rotational freedom and the command of the arm joints is 
performed by servo motors. 

The translational kinematics and dynamics of the 
quadrotor in the inertial coordinates are written as 
follows: 
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Where the vector 𝑝𝑝 represents the three components of 
the position of the quadrotor in the inertial coordinate, V 
represents the speed of the quadrotor, m represents the 
mass of the quadrotor and F is the vector of the thrust 
force produced by the blades. C is the matrix converting 
the coordinates from inertia to the body. Rotational 
dynamics of the quadrotor in the body coordinates are 
written as follows: 
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2.2. Inner loop controller 
In this section, the control law used to stabilize the 

rotational motion and track the desired path is presented. 
The control law is given by Eq. (5) [4]. It can be proved 
that the closed-loop system including the rotational 
dynamics of the quadrotor and the proposed control law 
is Locally Asymptotically Stable (LAS). 
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matrix converting the coordinates from the i+1 to i, mi is the 
mass of each link, F is the inertia force of each link, N is the 
moment of inertia of each link and i

if  and i
in  are force and 

torque exerted from the previous link to the link i.

2- 2- Inner loop controller
In this section, the control law used to stabilize the 

rotational motion and track the desired path is presented. 
The control law is given by Eq. (5) [4]. It can be proved that 
the closed-loop system including the rotational dynamics 
of the quadrotor and the proposed control law is Locally 
Asymptotically Stable (LAS).
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Where the vector 𝑝𝑝 represents the three components of 
the position of the quadrotor in the inertial coordinate, V 
represents the speed of the quadrotor, m represents the 
mass of the quadrotor and F is the vector of the thrust 
force produced by the blades. C is the matrix converting 
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dynamics of the quadrotor in the body coordinates are 
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diagonal inertia matrix, T is the torque vector applied to 
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2.2. Inner loop controller 
In this section, the control law used to stabilize the 

rotational motion and track the desired path is presented. 
The control law is given by Eq. (5) [4]. It can be proved 
that the closed-loop system including the rotational 
dynamics of the quadrotor and the proposed control law 
is Locally Asymptotically Stable (LAS). 
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Where the vector 𝑝𝑝 represents the three components of 
the position of the quadrotor in the inertial coordinate, V 
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2.2. Inner loop controller 
In this section, the control law used to stabilize the 

rotational motion and track the desired path is presented. 
The control law is given by Eq. (5) [4]. It can be proved 
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In this equation, 𝑠𝑠𝑠𝑠𝑡𝑡𝑀𝑀𝑖𝑖2is a saturation function with 
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is the component i of the quadrotor angular velocity 
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 (6)

In this equation, 
2iMsat is a saturation function with 

saturation limit 2iM , 
iarmT  is the component i of the 

estimated disturbance torque acting on the quadrotor, iω   is 
the component i of the quadrotor angular velocity vector, and 
λ and  iρ are the positive control coefficients. e iq  is the ith 
component of the quaternion error vector as calculated in Eq. 
(6). In this equation, dq  is the desired value of the quaternion 
vector.

2- 3- Outer loop controller
This controller uses three components of position and yaw 

angle of the quadrotor and their desired values and produces 
the desired quaternion vector and the necessary thrust force. 
The control and estimation laws of this controller are as 
follows [5]:
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𝑞𝑞𝑒𝑒𝑖𝑖 is the ith component of the quaternion error vector as 
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The vector ω is the estimated variable, that is the 
disturbance forces acting on the quadrotor and 𝑞𝑞′ is the 
output force of the controller. 
 

2.4. Estimation of disturbance torque with 
Kalman filter 

The expression for the estimated torque in the orientation 
controller is calculated using the discrete Kalman filter to 
improve the performance of the inner loop controller and 
reduce overshoot in its response. Kalman filter equations 
are written according to Ref. [6]. 

3. Results and Discussion 
To evaluate the performance of the proposed algorithms, 
a set of simulations (missions) has been performed using 
MATLAB software. 
 

3.1. Missions 
In the first mission, the quadrotor first goes to a 

specific position in space. At the same time, the arm 
moves and goes to the desired point in its workspace. 
Finally, a torque vector is applied to the end-effector and 
the system must maintain its position. In the second 
mission, the quadrotor and the arm tried to follow a 
desired path in the plane in a simultaneous motion. The 
end-effector desired path in this mission is a chain of 
consecutive lines and circles. The end-effector must also 
apply force to the plane. This mission demonstrates the 
system's ability to follow complex paths that require the 
cooperation of both members. 

 
3.2. Results 

The following figure shows the position of the end-
effector in mission 1 in the inertial coordinates. 

 

As it can be seen, the movement of the arm and the 
applied torque to the end-effector has a slight effect on 
the position of the system. 
The path following the end-effector in the second mission 
is shown in the following figure. It can be seen that at the 
moment of applying the force, the error of position 
tracking is magnified for short moments. But then the 
force and torque applied to the quadrotor are estimated 
and compensated at a reasonable speed. 
 

 
4. Conclusion 

The purpose of this study was to achieve a control law 
for a system consisting of a quadrotor and a 3-Degrree of 
Freedom (DOF) arm. The use of torque and force 
estimation algorithms improved the control performance. 
Inverse kinematics was used to track the end-effector 
path. 

Examination of the results showed that the 
performance of the system when encountering 
disturbance forces and torques was acceptable and 
tracking was done with reasonable accuracy. 
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is shown in the figure 2. It can be seen that at the moment of 
applying the force, the error of position tracking is magnified 
for short moments. But then the force and torque applied to 
the quadrotor are estimated and compensated at a reasonable 
speed.

4- Conclusion
The purpose of this study was to achieve a control law 

for a system consisting of a quadrotor and a 3-Degrree of 
Freedom (DOF) arm. The use of torque and force estimation 
algorithms improved the control performance. Inverse 
kinematics was used to track the end-effector path.

Examination of the results showed that the performance of 
the system when encountering disturbance forces and torques 
was acceptable and tracking was done with reasonable 
accuracy.

References
[1] 	I. Maza, F. Caballero, J. Capitán, J.R. Martínez-De-

Dios, A. Ollero, Experimental results in multi-UAV 

coordination for disaster management and civil security 
applications, Journal of Intelligent and Robotic Systems: 
Theory and Applications, 61 (2011) 563-585.

[2] R. Amin, L. Aijun, S. Shamshirband, A review of 
quadrotor UAV: Control methodologies and performance 
evaluation, International Journal of Automation and 
Control, 10 (2016) 87-103. 

[3] J. J. Craig, Introduction to robotics: Mechanics and 
control, Upper Saddle River: Pearson, 2005.

[4] J. U. A. MUÑOZ, Modeling and control of VTOL 
vehicles with rigid manipulators, University of Grenoble, 
Phd Dissertation, 2017.

[5] B. Zhao, B. Xian, Y. Zhang, X. Zhang, Nonlinear robust 
sliding mode control of a quadrotor unmanned aerial 
vehicle based on immersion and invariance method, 
International Journal of Robust and Nonlinear Control, 
25 (2015) 3714-3731.

[6] D. Simon, Optimal State Estimation: Kalman, H Infinity, 
and Nonlinear Approaches, 1st ed., Wiley-Interscience, 
2006.

HOW TO CITE THIS ARTICLE
H. Shamsollahi, F. Rekabi, F. A. Shirazi, M. J. Sadigh, Control of a Quadrotor Equipped with 
Robotic Arm Based on Disturbance Estimation, Amirkabir J. Mech Eng., 54(4) (2022) 155-158.

DOI: 10.22060/mej.2022.20134.7175

3 
 

𝑞𝑞𝑒𝑒𝑖𝑖 is the ith component of the quaternion error vector as 
calculated in Eq. (6). In this equation, 𝑞𝑞𝑑𝑑 is the desired 
value of the quaternion vector. 
 

2.3. Outer loop controller 
This controller uses three components of position and 
yaw angle of the quadrotor and their desired values and 
produces the desired quaternion vector and the necessary 
thrust force. The control and estimation laws of this 
controller are as follows [5]: 

(7) ( ( ) )

.( )

T T

p p

e q
e r

q k r

     

   

       
 

     

 

The vector ω is the estimated variable, that is the 
disturbance forces acting on the quadrotor and 𝑞𝑞′ is the 
output force of the controller. 
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are written according to Ref. [6]. 
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a set of simulations (missions) has been performed using 
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specific position in space. At the same time, the arm 
moves and goes to the desired point in its workspace. 
Finally, a torque vector is applied to the end-effector and 
the system must maintain its position. In the second 
mission, the quadrotor and the arm tried to follow a 
desired path in the plane in a simultaneous motion. The 
end-effector desired path in this mission is a chain of 
consecutive lines and circles. The end-effector must also 
apply force to the plane. This mission demonstrates the 
system's ability to follow complex paths that require the 
cooperation of both members. 

 
3.2. Results 

The following figure shows the position of the end-
effector in mission 1 in the inertial coordinates. 

 

As it can be seen, the movement of the arm and the 
applied torque to the end-effector has a slight effect on 
the position of the system. 
The path following the end-effector in the second mission 
is shown in the following figure. It can be seen that at the 
moment of applying the force, the error of position 
tracking is magnified for short moments. But then the 
force and torque applied to the quadrotor are estimated 
and compensated at a reasonable speed. 
 

 
4. Conclusion 

The purpose of this study was to achieve a control law 
for a system consisting of a quadrotor and a 3-Degrree of 
Freedom (DOF) arm. The use of torque and force 
estimation algorithms improved the control performance. 
Inverse kinematics was used to track the end-effector 
path. 

Examination of the results showed that the 
performance of the system when encountering 
disturbance forces and torques was acceptable and 
tracking was done with reasonable accuracy. 
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Fig. 1. the position of the end-effector in mission 1 in 
the inertial coordinates
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Fig. 2. The path following the end-effector in the sec-
ond mission
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