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ABSTRACT: In this paper, an adaptive sliding mode controller with variable gains to cope with 
uncertainties is proposed for an electromechanical clutch position control system to apply in the 
automated manual transmission. Transmission systems undergo changes in parameters with respect to 
the wide range of driving conditions, such as changes in friction coefficient of clutch disc and stiffness 
of diaphragm spring, hence, an adaptive robust control method is required to overcome the uncertainties 
and disturbances. As the majority of transmission dynamics variables cannot be measured in a cost-
efficient way, a non-linear estimator based on an unscented Kalman filter is designed to estimate the state 
valuables of the system. Also, a non-linear dynamic model of the electromechanical actuator is presented 
for the automated clutch system. The model is validated with experimental test results. A numerical 
simulation of a reference input for clutch bearing displacement is performed to evaluate the performance 
of the designed controller and estimator. To evaluate the performance of the proposed control system the 
root mean square value of the position tracking error has been used. The results of the analysis indicate 
higher efficiency of the adaptive controller designed to improve the position tracking error compared to 
the conventional sliding mode controller.
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1- Introduction
Nowadays, the two types of most widely utilized 

transmission systems are Manual Transmission (MT) and 
Automatic Transmission (AT), each with its advantages 
and disadvantages. With the development of electronics 
and intelligent systems and their application in mechatronic 
systems of vehicles, the idea of automating the MT using 
actuators and intelligent controllers was introduced as an 
Automated Manual Transmission (AMT). Clutch actuation is 
one of the most complex parts of the AMT. The automated 
clutch can be disengaged and engaged automatically and 
should be designed to satisfy different and conflicting 
objectives, such as small friction losses, minimum time 
required for the engagement, and driver comfort during the 
engaging and disengaging process [1].

Position tracking control was implemented for the 
motor-driven gear-shift actuating mechanism of the electro-
mechanical AMT system. To realize rapid and precise gear-
shift control, an optimal discrete-time preview position 
control scheme was introduced. The proposed control method 
included the state-feedback control, discrete integrator, 
and feed-forward control [2]. A new hybrid optimization 
algorithm for the DC motor of electro-mechanical AMT was 
designed. It included a non-linear time-optimal controller and 
optimal linear quadratic regulator [3].

A Sliding Mode Controller (SMC) was proposed to 
design the combined electromechanical and electrohydraulic 
actuators. The main focus of this study was on pressure 
control in an electrohydraulic actuator with time-varying 
parameters without using the observer of state variables 
and the clutch spring was modeled nonlinearly [4]. In 
another paper, the researchers proposed a combination of 
a proportional-integral-derivative controller and an SMC 
to design an electromechanical actuator control system. 
However, the effect of parametric uncertainties on the 
controller performance was not investigated and the state 
variables used in the design of the control system were 
measurable. As a result, the estimator was not adopted in the 
control algorithm [5].

Due to the hard non-linearity of the spring stiffness of 
the actuator and clutch, a nonlinear estimator is needed to 
estimate the system states. To achieve this, many approaches 
have been suggested such as recursive least-square, sliding 
mode observer, Extended Kalman Filter (EKF), and 
Unscented Kalman Filter (UKF). However, the EKF has 
been rarely investigated in the previous AMT studies. When 
an EKF is applied to a complex non-linear system, a few 
problems may arise. One of them is the computation of the 
state transition matrix which requires the calculation of the 
Jacobian matrix. Moreover, the linearization can make large 
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errors and even cause divergence of the filter. To overcome 
this limitation, the UKF is utilized and developed currently. 
The UKF algorithm has many advantages over the EKF, 
especially in the case of high non-linearity. The UKF directly 
uses nonlinear equations of the system and does not require 
linearization [6]. According to the review of the presented 
studies, the contributions of this paper can be described as 
follows:

The first contribution of this paper is to build a validated 
and accurate model for the electromechanical clutch actuator 
without an available dynamic model and known parameters 
according to test results for the electromechanical clutch 
actuator. This model is applied to design the Adaptive Sliding 
Mode Controller (ASMC) and verified based on comparison 
with the simulation results of a created model in ADAMS/
View software. 

The second is a combined use of ASMC and UKF 
estimator to improve the clutch position control performance 
for the AMT system. The designed ASMC, which is 
insensitive to system uncertainties, offers adaptive sliding 
gains to eliminate the bounds of uncertainties. The rotational 
speed and acceleration of the clutch actuator are estimated in 
real-time utilizing the UKF.

2- Electromechanical Clutch Actuator Model
The electromechanical clutch actuator model uses an 

electric motor to engage and disengage the clutch. In the 
clutch actuator, the rotary movement of the electric motor is 
transferred via a toothed gear segment into a linear movement, 
which is then used to open the clutch with the help of the 
release lever and release bearing. A schematic diagram of the 
clutch actuating mechanism is shown in Fig. 1. As shown in 
the figure, the system mainly consists of three components: 
a gear, a coil spring, and a slider-crank mechanism. Thus, 
the system model is obtained by a set of kinematics and 
kinetics equations that describes the dynamics of the 
electromechanical actuator. The slider-crank includes links of 

BC and AB and revolute joints A, B, and C. The points of C 
and F are fixed and point A has translation motion. The input 
gear link is a compound member with a circular segment. 
There are teeth around this link that engage the electromotor 
pinion. The angular velocity of the gear is ω. According to 
the geometry of mechanism, trigonometric relations, also the 
relative motion analysis, the derivative of the spring length is 
obtained as follows:
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So, the spring force and its torque around point E is 
determined if angle β is known. This angle is found as follows:

3 

 
Fig. 1. Schematic diagram of the clutch actuating mechanism 

So, the spring force and its torque around point E is 
determined if angle β is known. This angle is found as 
follows: 

(2)    2 2 2 2
2

. .cos 0.025 .cosCE
EF EF

     


   
 

 

After actuator modeling, several tests run to 
investigate the performance of the clutch actuator is 
driven by the DC electromotor with the ua=14 V rated 
voltages. Then the simulation results were compared 
with the measurements on the test stand which has been 
done in the laboratory as shown in Fig. 2. Some necessary 
modifications have been made in the model parameters, 
to get good agreements with the test results. 
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4- Simulation Results
The accuracy of the proposed SMC combined with the 

UKF estimator is evaluated without any torque disturbance 
for the model with nominal parameters. The objective is to 
control the clutch to move from the initial position to the end. 
Hence, the position control of the clutch is analyzed in this 
investigation by adopting the SMC controller. The designed 
SMC combined with the UKF estimator is efficient to track 
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However, the proposed SMC system cannot perform with 
high accuracy in the presence of parameter uncertainties 
and external disturbances. Since the transmission systems 
undergo changes in parameters with respect to the wide 
range of driving conditions, such as changes in friction 
coefficient of clutch disc and stiffness of diaphragm spring, 
and the longer-time wear and tear during the running period, 
an ASMC method is required to guarantee good tracking 
performance and cope the uncertainties and disturbances. To 
achieve this, in the following, the simulations are conducted 
under two different conditions of parameter uncertainties in 
modeling for load torque of clutch spring. Let us assume that 
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proposed adaptive controller, the results of the ASMC are 
compared with the SMC.
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of proposed control systems is the Root Mean Square (RMS) 
value of the tracking error of clutch position. The RMS 
values of tracking error for the control systems are computed, 
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5. Conclusions 

This paper proposed an ASMC combined with the 
UKF estimator for the automated clutch system. The 
stability of the controller was approved by using the 
Lyapunov theorem and the robustness of the designed 

ASMC was investigated by performing some simulations 
in the MATLAB environment based on a validated non-
linear model for the clutch actuator. The analyses are 
conducted under two different conditions of parameter 
uncertainties. It was presumed that the parameters of the 
clutch spring model were decreased by 10% and 20%. A 
precise tracking response of position control can be 
observed by employing the proposed ASMC in the 
presence of parameter uncertainties against the 
traditional SMC. Also, the UKF was applied to estimate 
precisely the full states of the system without a 
significant error. The contributions of this study are the 
following:   
The first contribution of this paper is to build a validated 
model for the electromechanical clutch actuator without 
available dynamic model and known parameters. By 
comparison with the test results and simulation analyses, 
the actuator model was verified. The second is that a 
nonlinear estimator was proposed through UKF to 
estimate the variables that cannot be measured in a cost-
efficient way such as rotational speed and angular 
acceleration. The third one is presenting the high 
effectiveness of the ASMC against the conventional 
SMC to track exactly the reference trajectories and 
control the dynamic systems accompanied by 
uncertainties and disturbances.  
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estimator for the automated clutch system. The stability of the 
controller was approved by using the Lyapunov theorem and 
the robustness of the designed ASMC was investigated by 
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this study are the following:  

The first contribution of this paper is to build a validated 
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available dynamic model and known parameters. By 
comparison with the test results and simulation analyses, 
the actuator model was verified. The second is that a 
nonlinear estimator was proposed through UKF to estimate 
the variables that cannot be measured in a cost-efficient 
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against the conventional SMC to track exactly the reference 
trajectories and control the dynamic systems accompanied by 
uncertainties and disturbances. 

References
[1] 	J. Horn, J. Bamberger, P. Michau, S. Pindl, Flatness-

based clutch control for automated manual transmissions, 
Control engineering practice, 11(12) (2003) 1353-1359.

[2] Z. Chen, B. Zhang, N. Zhang, H. Du, G. Kong, Optimal 
preview position control for shifting actuators of 
automated manual transmission, Proceedings of the 
Institution of Mechanical Engineers, Part D: Journal of 
Automobile Engineering, 233(2) (2019) 440-452.

[3] G. Kong, N. Zhang, B. Zhang, Novel hybrid optimal 
algorithm development for DC motor of automated 
manual transmission, International Journal of Automotive 
Technology, 17(1) (2016) 135-143.

[4] R. Temporelli, M. Boisvert, P. Micheau, Control of an 
electromechanical clutch actuator using a dual sliding 
mode controller: Theory and experimental investigations, 
IEEE/ASME Transactions on Mechatronics, 24(4) 
(2019) 1674-1685.

[5] S.A. Haggag, Sliding mode adaptive PID control of an 
automotive clutch-by-wire actuator, SAE International 
Journal of Passenger Cars-Mechanical Systems, 9(2016-
01-9106) (2016) 424-433.

[6] A. Bagheri, S. Azadi, A. Soltani, A combined use of 
adaptive sliding mode control and unscented Kalman 
filter estimator to improve vehicle yaw stability, 
Proceedings of the Institution of Mechanical Engineers, 
Part K: Journal of Multi-body Dynamics, 231(2) (2017) 
388-401.

HOW TO CITE THIS ARTICLE
A. Soltani, M. Arianfard, Clutch Position Control for an Automated Manual Transmission Us-
ing Electromechanical Actuators, Amirkabir J. Mech Eng., 54(4) (2022) 159-162.

DOI: 10.22060/mej.2021.20470.7238


