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ABSTRACT: Forming limit diagrams are a criterion to predict the necking for constructing an optimal 
design in metal products. In this paper, the Marciniak-Kuczynski instability theory is used to determine 
the forming limits of the AA6111-T43 sheet. Also, Hill 48, Gotoh, and Yld2000-2d yield criteria are 
investigated to describe the yield behavior of the alloy, and their coefficients are computed based on the 
results obtained from uniaxial and bulge tests. Finally, forming limit diagrams are plotted by employing 
different yield functions and appropriate hardening models. The comparison between theoretical and 
experimental results indicated that the limit strains obtained by the Yld2000-2d criterion and Swift 
model are in better agreement with experimental data than others. Since in complex forming processes, 
the strain path is rarely linear, the investigation of the forming limit diagram by considering the nonlinear 
strain path is important. In multi-stage forming processes, while the limit strains are significantly path 
dependent, the forming limit stress diagram is less dependent on the loading path. However the sensitivity 
of the forming limit stresses to the path is lower than limit strains, the limit stresses in large pre-strain are 
not completely loading path independent. The sensitivity of the limit stresses to strain path in addition 
to the magnitude of the pre-strain, also depends on the used hardening model and yield function that are 
examined in detail in this study. 
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1- Introduction
Since in complex metal forming processes, considering 

the linear loading condition is not a correct assumption, a 
lot of research is done to investigate the effect of the strain 
path on Forming Limits Diagram (FLD). Graf and Hosford 
[1] investigated the effect of nonlinear strain paths on the 
forming limits of aluminum alloys, and they announced 
that the change of the strain path has a great effect on the 
specimen’s formability. Yoshida et al. [2] proposed the 
Forming Limit Stress Diagram (FLSD) as a valuable criterion 
because of the path-independence of the limit stresses in metal 
forming processes. Although later, Yoshida and Kuwabara 
[3] indicated that the limit stresses are not completely path 
independent, and the path dependence of FLSD is affected 
by the hardening behavior of the material. Nurcheshmeh and 
Green [4] investigated the path dependency of the Forming 
Limit Stress Diagram (FLSD) for various combined loading 
history and it was observed that for a range of pre-strain 
values, the FLSD remain constant along different paths. Wang 
et al. [5] determined the forming limits of the AA5754-O by 
applying the Yld2000-2d yield criterion in non-linear loading 
path processes and they discussed the path-dependence of the 
limit stress diagrams. Sojodi et al. [6] by applying the modified 

Kim-Tuan hardening model, investigated the influence of the 
compressive normal stress on the path dependence of FLSD. 
Also, they examined the effect of the pre-strain magnitudes 
on the sensitivity of FLD to compressive normal stress. 

In this paper, the influences of the loading path on forming 
limit diagrams are studied and the path dependence of FLD 
and FLSD are analyzed in detail. In the end, the sensitivity 
of the FLSD to the magnitude of the pre-strain for different 
constitutive models is discussed  and the critical effective 
strain values that specified the path dependence of FLSD are 
determined.

2- Marciniak-Kuczynski Model 
This method is based on the existence of the initial 

imperfection that is characterized by the reduction of thickness 
in a part of the sheet. The initial thickness imperfection is 
defined as:
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at  and 0

bt  are the initial thickness in the safe 
and defect region, respectively. In the M-K approach, 
the equivalent strain increment d  with a specific stress 
ratio 2 1( / )    was applied to the safe region and 
then the other strain and stress component values in this 
area were computed by using the flow rule, hardening 
equation, and yield function The unknown parameters in 

the groove zone were calculated according to three 
major assumptions including compatibility condition, 
geometrical imperfection, and force equilibrium that are 
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(2) a b
tt ttd d   

(3) /
   

/

a a b b b a
nn nn nn nn
a a b b b a
nt nt nt nt

t t f

t t f

   

   

    
   

 

The Numerical Newton-Raphson method is used to 
solve the nonlinear set of equations, and the unknown 
stress and strain components in the defect region are 
obtained when the effective strain increment in the 
groove reaches ten times greater than the perfect area. 
This numerical procedure in each stress ratio is repeated 
for different groove directions to determine minimum 
limit strains [4]. 

3. Work-Hardening Models 

To investigate the influence of the hardening law on the 
forming limit diagrams, Swift and voce stress-strain are 
utilized to describe the mechanical behavior of the 
AA6111-T43 alloy as [7]: 
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4. Yield Functions 

Yld2000-2d yield criteria are expressed as: 

 Yld200-2d yield criterion[8]: 
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5. Results and Discussion 

The M-K criterion code was developed to calculate the 
theoretical forming limit diagram of AA6111-T43 under 
combined loading paths. Fig. 1 shows the limit strains 
obtained under various pre-strains along the uniaxial 
tension, plane strain, and equi-biaxial tension paths. 
It was seen in Fig. 1 that the strain path dependence of 
limit strains under bilinear loading paths with higher 
pre-strains is more obvious. Therefore, the larger the 
pre-strain causes the more influence on the forming 
limits. 
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Where 0
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bt  are the initial thickness in the safe 
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and defect region, respectively. In the M-K approach, the 
equivalent strain increment dε  with a specific stress ratio 

2 1( / )α σ σ=  was applied to the safe region and then the other 
strain and stress component values in this area were computed 
by using the flow rule, hardening equation, and yield function 
The unknown parameters in the groove zone were calculated 
according to three major assumptions including compatibility 
condition, geometrical imperfection, and force equilibrium 
that are expressed as:
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3. Work-Hardening Models 

To investigate the influence of the hardening law on the 
forming limit diagrams, Swift and voce stress-strain are 
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5. Results and Discussion 

The M-K criterion code was developed to calculate the 
theoretical forming limit diagram of AA6111-T43 under 
combined loading paths. Fig. 1 shows the limit strains 
obtained under various pre-strains along the uniaxial 
tension, plane strain, and equi-biaxial tension paths. 
It was seen in Fig. 1 that the strain path dependence of 
limit strains under bilinear loading paths with higher 
pre-strains is more obvious. Therefore, the larger the 
pre-strain causes the more influence on the forming 
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5. Results and Discussion 

The M-K criterion code was developed to calculate the 
theoretical forming limit diagram of AA6111-T43 under 
combined loading paths. Fig. 1 shows the limit strains 
obtained under various pre-strains along the uniaxial 
tension, plane strain, and equi-biaxial tension paths. 
It was seen in Fig. 1 that the strain path dependence of 
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The Numerical Newton-Raphson method is used to 
solve the nonlinear set of equations, and the unknown 
stress and strain components in the defect region are 
obtained when the effective strain increment in the 
groove reaches ten times greater than the perfect area. 
This numerical procedure in each stress ratio is repeated 
for different groove directions to determine minimum 
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utilized to describe the mechanical behavior of the 
AA6111-T43 alloy as [7]: 

(4)  0
nK     

(5)  cA Be     

4. Yield Functions 

Yld2000-2d yield criteria are expressed as: 

 Yld200-2d yield criterion[8]: 
(6) 2 m        

(7) '' '' '' ''
2 1 1 22 2

m m
X X X X      

(8) '' '' '' ''
2 1 1 22 2

m m
X X X X      

5. Results and Discussion 

The M-K criterion code was developed to calculate the 
theoretical forming limit diagram of AA6111-T43 under 
combined loading paths. Fig. 1 shows the limit strains 
obtained under various pre-strains along the uniaxial 
tension, plane strain, and equi-biaxial tension paths. 
It was seen in Fig. 1 that the strain path dependence of 
limit strains under bilinear loading paths with higher 
pre-strains is more obvious. Therefore, the larger the 
pre-strain causes the more influence on the forming 
limits. 
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The Numerical Newton-Raphson method is used to 
solve the nonlinear set of equations, and the unknown 
stress and strain components in the defect region are 
obtained when the effective strain increment in the 
groove reaches ten times greater than the perfect area. 
This numerical procedure in each stress ratio is repeated 
for different groove directions to determine minimum 
limit strains [4]. 

3. Work-Hardening Models 

To investigate the influence of the hardening law on the 
forming limit diagrams, Swift and voce stress-strain are 
utilized to describe the mechanical behavior of the 
AA6111-T43 alloy as [7]: 
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5. Results and Discussion 

The M-K criterion code was developed to calculate the 
theoretical forming limit diagram of AA6111-T43 under 
combined loading paths. Fig. 1 shows the limit strains 
obtained under various pre-strains along the uniaxial 
tension, plane strain, and equi-biaxial tension paths. 
It was seen in Fig. 1 that the strain path dependence of 
limit strains under bilinear loading paths with higher 
pre-strains is more obvious. Therefore, the larger the 
pre-strain causes the more influence on the forming 
limits. 
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Fig. 2. FLSDs based on different pre-effective strains by 
using (a) Swift (b) Voce hardening models 

The criterion for this behavior, dependence or 
independence of FLSD, is the magnitude of pre-
effective strain compared to the value of the effective 
forming limit strain in-plane strain state and linear 
loading condition (effective FLD0). The calculated 
effective FLD0 for the Swift and Voce hardening laws 
are 0.237, and 0. 172 respectively. Briefly, if effective 
pre-strain in the multistep loading path process is less 
than this critical value, the final limit stresses will 
coincide with the FLSD in linear condition. But, if the 

strain path changed after this critical value, the limit 
stresses will be affected by the pre-strain.  

6. Conclusion 

The most important consequences of this study are 
below items: 
 The FLD in nonlinear strain path processes are 

significantly dependent on the strain path. Although 
the sensitivity of forming limits in stress space to 
loading path are less than limit strains, FLSD is not 
completely path independent. 

 The forming limit curves in stress space for the 
multistep strain path processes will be path-
dependent if the pre-strain is more than effective 
FLD0. Also, the selective constitutive model 
significantly affects the path dependency of the 
forming limit stress curve.  
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strain in-plane strain state and linear loading condition 
(effective FLD0). The calculated effective FLD0 for the Swift 
and Voce hardening laws are 0.237, and 0. 172 respectively. 
Briefly, if effective pre-strain in the multistep loading path 
process is less than this critical value, the final limit stresses 
will coincide with the FLSD in linear condition. But, if the 
strain path changed after this critical value, the limit stresses 
will be affected by the pre-strain. 

6- Conclusion
The most important consequences of this study are below 

items:
The FLD in nonlinear strain path processes are significantly 

dependent on the strain path. Although the sensitivity of 
forming limits in stress space to loading path are less than 
limit strains, FLSD is not completely path independent.

The forming limit curves in stress space for the multistep 
strain path processes will be path-dependent if the pre-strain 
is more than effective FLD0. Also, the selective constitutive 
model significantly affects the path dependency of the 
forming limit stress curve. 
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