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ABSTRACT: In this paper, the dynamic behavior of a small-scale parallelogram (P) flexure is studied. 
First, using the beam constrain model and the modified strain gradient theory, the nonlinear strain energy 
of a small-scale beam is obtained in terms of its tip displacements. This energy expression is utilized 
to derive the strain energy of a P-flexure. Then the governing dynamic equations of motion are derived 
using Lagrange equations and are linearized around the operating equilibrium point. This linear model is 
employed to determine the allowable forces which do not lead to instability of the system. Moreover, the 
natural frequencies of the system are also extracted and the size effect as well as the static components 
of the applied loads on them are studied in detail. It is observed that by reducing the dimensions, the 
normalized transverse natural frequency of the system is increased. However, since there is no strain 
gradient in an axial mode, the axial normalized frequency is remained constant reducing the dimensions 
of the system. Moreover, it was observed that the tensile static forces lead to an increase, and transverse 
forces lead to a decrease in normalized natural frequency of the system. The procedure utilized for 
dynamic modeling of parallelogram flexures in this paper can be further extended for modeling more 
complex flexure systems.
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1- Introduction
Flexure mechanisms are kind of mechanisms that instead 

of using classical joints, employs the elastic deformation of its 
elements for providing the desired motion. Since fabricating 
classical mechanisms in small dimensions is very difficult, the 
main advantage of the flexure mechanisms is their application 
in small scales. Miniaturization provides the possibility of 
reducing the dimensions of the currently available devices. 
Moreover, it offers the possibility of fabricating new systems 
with unique applications. Among various examples of small-
scale systems, one can point to the position sensors [1], 
accelerometers [2], force sensors [3], resonators [4], pressure 
gauges [5] gyroscopes [6], and micromirrors [7]. Most of 
the micro-scale mechanisms are fabricated using small-scale 
parallelogram (P) flexures which in turn are made up of two 
slender parallel beams connected to a moving stage. This 
element has very large stiffness in the constraint (rotational 
and axial) directions while presenting very low stiffness in 
the transverse direction. This specification has made them 
very suitable for applications in positioning systems. So, 
dynamic analysis of these elements is of primary importance.

The beam constraint model (BCM) is a simple yet 
efficient approach for the analysis of flexure mechanisms. 
The base of this method was first presented by Awtar and 
Slocum [8]. Then Awtar and Sen [9, 10] extended this method 

by presenting a closed-form expression for the nonlinear 
strain energy of a beam in terms of its tip displacements. This 
innovation made this method very suitable for the analysis of 
more complex flexure units. Based on BCM, the static [11-
13] and vibration [14-16] behavior of many flexure systems 
were studied. However, all these researches were based on 
classical elasticity theory which is not sufficiently accurate in 
small-scale systems. So, the objective of the current research 
is to extend the BCM to micro dimensions using the modified 
strain gradient method and then use it for dynamic analysis of 
micro-scale P-flexures.

2- Methodology
Fig. 1, shows the schematic view of a P-flexure with a 

rigid motion stage, under the effect of end loads FX, FZ, 
and MY. The length, width, and thickness of the beams are 
respectively L, b, and h.

In P-flexures, the rotation of the stage is very small and 
can be easily neglected [16]. In this condition, the transverse 
and axial displacement components of the beams will be 
identical to those of point O. Moreover, it can be shown that 
the normalized nonlinear strain energy of a P-flexure using 
BCM and modified strain gradient theory can be obtained as
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where u and w are respectively the normalized axial and 
transverse displacements of O and t̂ is the normalized 

time. Additionally, 1a ,  0
11k ,  1

11k and  2
11k are some 

constants that depend on the geometry of the system. 
Using a dimensional form of Eq. (1) as the potential and 

    2 22 / 2 PT mL du dt dw dt as the kinetic energy of 

the system, Lagrange equations can be employed to 
derive the normalized equations of motion as 
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where fx and fz are respectively the normalized forms of 
FX and FZ shown in Fig. 1., Eqs. (2) and (3) can be 
linearized around the operating point as 
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where the mass matrix [ ] is the identity and    is the 
symmetric stiffness matrix. By observing the location of 
the poles of the transfer function of the system, its 
stability limit can be determined. 

 Results and Discussion 

In Fig. 2, the stability limit along with the map of w < 
0.15 within which the BCM is valid, is depicted for a P-
flexure for the case of 17.6 μml  . Also, the natural 
frequencies of the system and their dependence on h are 
depicted in Fig. 3. It is observed that as h is increased, the 
results of the proposed model tend to be those of classical 
BCM. However, at small dimensions, there is a 
remarkable deviation between the models. 

3- Conclusion 

The objective of the current research is an analysis of the 
dynamic behavior of P-flexures as the flexure module 
utilized in most compliant mechanisms. To this end, first, 
the nonlinear strain energy of the P-flexure is determined 
using the BCM and modified strain gradient theory. 
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the system, Lagrange equations can be employed to 
derive the normalized equations of motion as 
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where fx and fz are respectively the normalized forms of 
FX and FZ shown in Fig. 1., Eqs. (2) and (3) can be 
linearized around the operating point as 
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where the mass matrix [ ] is the identity and    is the 
symmetric stiffness matrix. By observing the location of 
the poles of the transfer function of the system, its 
stability limit can be determined. 

 Results and Discussion 

In Fig. 2, the stability limit along with the map of w < 
0.15 within which the BCM is valid, is depicted for a P-
flexure for the case of 17.6 μml  . Also, the natural 
frequencies of the system and their dependence on h are 
depicted in Fig. 3. It is observed that as h is increased, the 
results of the proposed model tend to be those of classical 
BCM. However, at small dimensions, there is a 
remarkable deviation between the models. 

3- Conclusion 

The objective of the current research is an analysis of the 
dynamic behavior of P-flexures as the flexure module 
utilized in most compliant mechanisms. To this end, first, 
the nonlinear strain energy of the P-flexure is determined 
using the BCM and modified strain gradient theory. 

Fig. 1. A micro-scale P-flexure

 

Then, Lagrange equations were employed to determine 
the governing equations of motion. The linearized form 
of these equations was employed to determine the 
stability map of the system and to study the corresponded 
eigenvalue problem. The related results were used to 
study the effects of the applied static loads as well as the 
dimensions of the system on the system. The approach 
proposed in this paper can be further extended to study 
the dynamic behavior of more complex compliant 
mechanisms. 
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Fig. 3. Natural frequencies of a micro-scale P-flexure 
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motion. The linearized form of these equations was employed 
to determine the stability map of the system and to study the 
corresponded eigenvalue problem. The related results were 
used to study the effects of the applied static loads as well as 
the dimensions of the system on the system. The approach 
proposed in this paper can be further extended to study the 
dynamic behavior of more complex compliant mechanisms.
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