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ABSTRACT: In recent years, actuator methods in aerodynamic simulations have been favored by 
researchers. These methods can significantly reduce the computational effort compared to full-scale 
body resolving simulations. They are also more accurate than conventional methods that use simplified 
models. In this study, an actuator surface model is used to simulate flow around an airfoil in a steady two-
dimensional incompressible flow. In these models, the geometry of the airfoil is represented by volume 
forces distributed along the airfoil chord. For this purpose, the collocated method of mass corrected 
interpolation method is coupled with the Actuator Surface Model. To determine the accuracy of the 
results, the actuator surface method is compared with the full- computational fluid dynamics simulation 
method. Besides, a new study is presented to investigate the effect of changing different parameters 
of the actuator surface model on the accuracy of results. Finally, pressure and vorticity contours are 
plotted, and obtained results are compared with full- computational fluid dynamics results. The obtained 
results show that although the actuator surface has a moderate accuracy in calculating parameters such 
as velocity and pressure, it can predict aerodynamic forces and flow structures with acceptable accuracy. 
The method presented in this article can be used as an efficient tool in studying more complex cases.
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1- Introduction
A range of methods for performing airfoil simulations 

is available which are different in their capability to predict 
different aspects of aerodynamics behavior. Navier-Stokes 
simulations with fully-resolved boundaries are now precipitant. 
However, fully-resolved simulations come at great expense in 
terms of computational effort, and simulation time especially 
when multiple airfoils and structures are present in the flow 
field and complex meshes must be generated. Alternative, 
less expensive, non-Navier-Stokes models are available, 
such as momentum theory methods, panel methods, and free 
wake models. These models suffer from assumptions in their 
formulation that limit their applicability [1]. It is here that the 
actuator concept offers the potential for simulating at a less 
computational cost. In these models, the geometry of blades 
is represented by volume forces distributed along with disks 
or lines, or surfaces. In fact, for all actuator disk, surface, or 
line formulations used in the analysis of airfoil aerodynamics, 
the surfaces or volumes modeling the airfoil are allowed to be 
porous to the flow. The purpose of this paper is to investigate 
the main parameter of the actuator surface technique in 
airfoil simulation. In this article, the collocated method of 
Mass Corrected Interpolation Method (MCIM) is utilized for 
solving two-dimensional unsteady incompressible flow at 
low Reynolds number [2, 3]. Therefore, the Actuator Surface 

technique has to be placed in the developed Computational 
Fluid Dynamics (CFD) solver to be able to predict all 
parameters quantitatively.

2- Methodology
The two-dimensional Navier-Stokes solver used here is the 

collocated method of MCIM. The code is based on a control-
volume-based finite element method. AS model is included 
in the CFD solver, as shown in Fig. 1. But before combining 
this model and CFD solver, it was necessary to develop a 
CFD solver to add source terms to the momentum equation. 
The CFD-AS solver described here is applied on unstructured 
triangular grids. The computational mesh extends 14 chord 
lengths downstream and 10 chord lengths upstream, above, 
and below. To determine the accuracy of results, the Actuator 
Surface method is compared with the Full-CFD simulation 
method. Besides, a new study is presented to investigate 
the effect of changing different parameters of the Actuator 
Surface model on the accuracy of results.

3- Results and Discussion
As mentioned previously, in this study, for the first 

time, the effects of changing the effective parameters on 
the Actuator Surface technique and how to select their 
optimal values are investigated. These parameters include 
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the Gaussian filter, the density of the source terms applied 
in cells, and the location of the control point. All of these 
observations are shown in Figs. 2 to 4. 

Based on the results, the optimal values for the studied 
parameters are presented in Table 1.

In Fig. 5, pressure contours and streamlines are shown for 
both full-CFD and CFD-AS methods. As seen, the streamlines 
and pressure contours are very similar. It should be noticed 
that the CFD-AS method does not need a body-fitted mesh. 
because The geometry of airfoil is represented by volume 

forces. However, the streamlines do not cross the chord line 
which the forces are distributed along it.

4- Conclusion
In the present work, an actuator surface model is proposed 

for the CFD calculation of the flow around an airfoil. This 
method, called the CFD-AS method requires less computation 
effort than the full-CFD methods. The obtained results were 
encouraging. It can be said that the Actuator Surface method, 
while drastically reducing the computational cost, has 
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Fig. 1. Process diagram of the Flow solver (combination 
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