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ABSTRACT: Frequently used thin walled beams have low torsional stiffness and their torsional 
deformations may be of such magnitudes that it is not adequate to treat the angles of cross section 
rotation as small. In this paper, nonlinear torsional vibrations of thin walled beams will be investigated. 
The method of multiple scales will be implemented as a solution method and different nonlinear 
phenomena will be studied. The obtained results are compared with the available results in the literature 
which reveals an excellent agreement between different solution methodologies. The outcomes of this 
study show that beam nonlinear torsional dynamics and the related phenomena could influence the 
linear torsional dynamic of beams under axial load, e.g. rotating beams. Forced torsional vibrations of 
a beam with the excitation in the form of primary resonance of the first and second modes have been 
investigated. It has been demonstrated that in the case of the beam with two ends clamped boundary 
conditions, three-to-one internal resonance will appear. The primary resonance of the first and second 
modes has been solved in two sets of boundary conditions, torsionally clamped-fixed and torsionally 
fixed-fixed. Nonlinear response, amplitude-phase equations, fixed points, and their stability have been 
studied.
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1- Introduction
Nonlinear torsional vibrations of the beam have great 

practical importance in advanced engineering structures. It 
is shown in the literature (e.g. Ref. [1-3]) that the collective 
effect of axial load and pretwist angle leads to some interesting 
phenomena in torsional vibrations of beam-like structures. 
Nonlinear torsional vibrations of pretwisted axially loaded 
thin walled beam under primary resonance excitation of the 
first and second torsional modes will be investigated in this 
paper.

Methodology
The problem of nonlinear torsional vibrations of a 

beam with primary resonance excitation is addressed in the 
following context:

There is not any material or geometric coupling between 
the beam’s bending and torsional degrees of freedom,

Only axial and torsional degrees of freedom are retained 
in the displacement field,

The beam will undergo large torsional motions
Primary and secondary warpings in conjunction with 

warping inertia are considered in the model,
Hamilton’s principle is implemented in order to extract 

the governing equations of motion and the corresponding 
boundary conditions,

The governing equations of motion are cast into one 

equation neglecting axial inertia,
It is shown that the collective effect of pretwist angle and 

axial load leads to static untwist.
Primary resonance of the first and second modes is 

considered.
Fig. 1 shows the thin walled beam with pretwist angle 

which is considered in this paper.
The stain field could be stated as follows [1],
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The nonlinear governing differential equation of motion 
is as follows: 
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The corresponding parameters are defined in the paper. 
The primary resonances of first and second modes have 
been solved in two sets of boundary conditions, 
torsionally clamped-fixed and torsionally fixed-fixed. 
Nonlinear response, amplitude-phase equations, fixed 
points, and their stability have been studied. The effect 
of internal resonance is also addressed. 

3. Results and Discussion 
The paper contains various results concerning the 
primary resonance of first and second torsional modes 
with/without internal resonance in both torsionally 
fixed-fixed and fixed-free boundary conditions. The 
linear vibration problem in various boundary conditions 
is also addressed. Figs. 2 and 3 show the amplitude of 
the first and second torsional modes of the clamped-free 
beam in primary resonance conditions. The geometric 
and material properties of the beam are represented in 
the full paper.  

 (1)
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Fig. 2. First torsional mode amplitude versus frequency for 
the primary resonance of the first mode of the torsionally 
clamped-free beam, solid line with circle represent stable 
node; dashed line with triangle represent unstable saddle. 
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for the primary resonance of the first mode of the 
torsionally clamped-free beam, solid line with circle 

represent stable node; dashed line with triangle represent 
unstable saddle. 

It should be noted that clamped-free torsional boundary 
conditions lead to a 3 to 1 internal resonance between 
first and second torsional modes.  
Fig. 4 shows the amplitude-frequency plot of the first 
torsional mode for the torsionally clamped-clamped 
under primary resonance excitation of the first mode. 
Geometric and material properties of the beam are 
represented in the full paper and for the sake of brevity 
not included here. 
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4. Conclusion  
Nonlinear forced torsional vibration of pretwisted beam 
under axial loading is considered. Primary resonance of 
first and second torsional modes is considered. The 
structural model incorporates a number of non-classical 
effects such as restrained warping, trapeze effect, and 
warping inertia. Nonlinear equations of motion are 
derived using Hamilton’s principle and are solved using 
the method of multiple scales. A number of conclusions 
are outlined as, 

 The cumulative effect of axial loading and 
pretwist angle leads to an untwist phenomenon 
which is demonstrated and validated against 
existing results. 

 Linear torsional vibrations of the beam in 
different boundary conditions have been 
investigated. 

 Torsional vibration of the beam with clamped-
free torsional boundary condition consists of 3 
to 1 internal resonance between first and 
second torsional modes. 

 Internal resonance acts as a mechanism for the 
transfer of energy between vibration modes. 

 System response at resonance condition will 
consist of both natural frequencies of first and 
second modes and some other harmonics. The 
latter ones stem from the pretwist angle and 
axial loading and consist of 2×first natural 
frequency, 2×second natural frequency, and 
summation and extraction of first and second 
natural frequencies. 

 It is shown that the nonlinear Wagner term has 
a stiffening nature while the trapeze effect has 
to soften effect I beam’s torsional vibrations. 
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second torsional modes. 

 Internal resonance acts as a mechanism for the 
transfer of energy between vibration modes. 

 System response at resonance condition will 
consist of both natural frequencies of first and 
second modes and some other harmonics. The 
latter ones stem from the pretwist angle and 
axial loading and consist of 2×first natural 
frequency, 2×second natural frequency, and 
summation and extraction of first and second 
natural frequencies. 

 It is shown that the nonlinear Wagner term has 
a stiffening nature while the trapeze effect has 
to soften effect I beam’s torsional vibrations. 

References 

Fig. 3. Second torsional mode amplitude versus fre-
quency for the primary resonance of the first mode of 
the torsionally clamped-free beam, solid line with circle 
represent stable node; dashed line with triangle repre-

sent unstable saddle.
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Nonlinear equations of motion are derived using Hamilton’s 
principle and are solved using the method of multiple scales. 
A number of conclusions are outlined as,

The cumulative effect of axial loading and pretwist angle 
leads to an untwist phenomenon which is demonstrated and 
validated against existing results.

Linear torsional vibrations of the beam in different 
boundary conditions have been investigated.

Torsional vibration of the beam with clamped-free 

torsional boundary condition consists of 3 to 1 internal 
resonance between first and second torsional modes.

Internal resonance acts as a mechanism for the transfer of 
energy between vibration modes.

System response at resonance condition will consist of 
both natural frequencies of first and second modes and some 
other harmonics. The latter ones stem from the pretwist angle 
and axial loading and consist of 2×first natural frequency, 
2×second natural frequency, and summation and extraction 
of first and second natural frequencies.

It is shown that the nonlinear Wagner term has a stiffening 
nature while the trapeze effect has to soften effect I beam’s 
torsional vibrations. 
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Fig. 2. First torsional mode amplitude versus frequency for 
the primary resonance of the first mode of the torsionally 
clamped-free beam, solid line with circle represent stable 
node; dashed line with triangle represent unstable saddle. 

The obtained results show that the problem consists of 
multiple fixed points for different values of detuning 
parameters. 
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Fig. 3. Second torsional mode amplitude versus frequency 

for the primary resonance of the first mode of the 
torsionally clamped-free beam, solid line with circle 

represent stable node; dashed line with triangle represent 
unstable saddle. 

It should be noted that clamped-free torsional boundary 
conditions lead to a 3 to 1 internal resonance between 
first and second torsional modes.  
Fig. 4 shows the amplitude-frequency plot of the first 
torsional mode for the torsionally clamped-clamped 
under primary resonance excitation of the first mode. 
Geometric and material properties of the beam are 
represented in the full paper and for the sake of brevity 
not included here. 
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Fig. 4. first torsional mode amplitude versus frequency for 
the primary resonance of the first mode of torsionally 

clamped-clamped beam. 

 

4. Conclusion  
Nonlinear forced torsional vibration of pretwisted beam 
under axial loading is considered. Primary resonance of 
first and second torsional modes is considered. The 
structural model incorporates a number of non-classical 
effects such as restrained warping, trapeze effect, and 
warping inertia. Nonlinear equations of motion are 
derived using Hamilton’s principle and are solved using 
the method of multiple scales. A number of conclusions 
are outlined as, 

 The cumulative effect of axial loading and 
pretwist angle leads to an untwist phenomenon 
which is demonstrated and validated against 
existing results. 

 Linear torsional vibrations of the beam in 
different boundary conditions have been 
investigated. 

 Torsional vibration of the beam with clamped-
free torsional boundary condition consists of 3 
to 1 internal resonance between first and 
second torsional modes. 

 Internal resonance acts as a mechanism for the 
transfer of energy between vibration modes. 

 System response at resonance condition will 
consist of both natural frequencies of first and 
second modes and some other harmonics. The 
latter ones stem from the pretwist angle and 
axial loading and consist of 2×first natural 
frequency, 2×second natural frequency, and 
summation and extraction of first and second 
natural frequencies. 

 It is shown that the nonlinear Wagner term has 
a stiffening nature while the trapeze effect has 
to soften effect I beam’s torsional vibrations. 

References 

Fig. 4. first torsional mode amplitude versus frequency 
for the primary resonance of the first mode of torsion-

ally clamped-clamped beam.
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