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ABSTRACT: This paper proposes a novel hybrid control framework by combing enhanced extended 
state observer with trajectory linearization control for air vehicle acceleration tracking problems. First, 
based on the tracking error dynamics derived by Taylor expansion for the original nonlinear system 
along the desired trajectory, a feedback linearization-based control law is designed to stabilize a linear 
time-varying system. To reduce the controller performance sensitivity to uncertainties, with partial 
model information, an enhanced extended state observer is constructed to estimate the tracking error 
vector, as well as the uncertainties in an integrated manner. The closed-loop stability of the system under 
the proposed compound scheme is established. Both numerical simulation studies and an application 
example of air vehicle acceleration autopilot design demonstrate the feasibility and efficacy of the 
proposed method. 
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1- Introduction
In the last few decades, developments in nonlinear 

control methods have been made to eliminate perturbations 
and uncertainties, but each of these controllers (for example 
trajectory linearization control, gain scheduling controller, 
backstepping controller, sliding mode controller, etc.) 
has advantages and disadvantages over each other [1-3]. 
In order to improve the performance of the mentioned 
nonlinear controllers, Trajectory Linearization Control 
(TLC) is used as a new method to control nonlinear systems 
in the presence of perturbations. In fact, this method can 
be considered the ideal gain scheduling control. Therefore, 
due to its specific structure, it provides a certain extent of 
robust stability and can be capable of rejecting disturbances 
in nature. As for inevitable disturbances, theoretical and 
practical investigations show that a basic TLC frame may 
be degraded by slightly large disturbances [4, 5]. To enhance 
system robustness, one natural idea is to design observers 
for estimating and compensating for the disturbances. Such 
observers can be based on fuzzy logic or neural network. 
However, online fuzzy or neural network estimation is 
always time-consuming. One can see that the disturbance 
rejection problem for TLC has been converted into parameter 
estimation by utilizing NN and fuzzy logic. Therefore, 
substantial efforts have centered around the following aspects: 

(1) the construction of neural network structure and fuzzy 
logic rules; and (2) the stability discussion of the compound 
system based on the estimated uncertainties. Extended State 
Observer (ESO), as the centerpiece of the Active Disturbance 
Rejection Control (ADRC) technique, is a great solution 
to meet this fast computation requirement, which takes all 
internal and external disturbances as an extended state [6, 7] 

An observer named Enhanced Extended State Observer 
(EESO) is proposed to distinguish and estimate the unfavorable 
disturbance by just introducing the reference signal into the 
feedback term[1]. Besides supplying satisfactory robustness, 
the proposed EESO Based Control (EESOBC) that combines 
EESO with TLC strategy, is able to force the controlled 
output to track arbitrary reference signals. Central to this 
novel design framework is the ability of EESO to estimate 
both the internal dynamics and external disturbances of the 
considered system in real time.

2- Methodology
2- 1- Configuration of trajectory linearization control based 
enhanced extended state observer 

As shown in Fig. 1, Trajectory Linearization Control 
Based Enhanced Extended State Observer (TLC-EESO) 
design method consists of three parts. One is 

the forward loop is designed by the use of the nonlinear 
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dynamic inverse method, which changes the trajectory 
tracking problem into error adjustment problems. The second 
part is the state feedback loop designed by the use of linear 
varying system Parallel-Differential (PD) spectral theory, 
which ensures the robustness of the system with model errors. 
Another part is the EESO observer.

2- 2- Trajectory linearization control based enhanced 
extended state observer design for air vehicles in the presence 
of multiple uncertainties

A generic longitudinal air vehicle nonlinear dynamics 
model is described as
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Fig. 1. Configuration of trajectory linearization control 
based enhanced extended state observer (TLC-EESO) 
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Fig. 2 shows the structure of the proposed novel 
attitude control design for an air vehicle with multiple 
disturbances. By using the TLC-EESO method for air 
vehicle system, the present control system can be 
separated into an attitude loop and angular rate loop. 
The angular rate loop is accounted for regulating the 
angular rate by acting on deflection angles whereas the 
attitude loop is employed to track the reference attitude 
command c  by considering the reference angular rate 

command ( )
z c

  as the input control. In a view of 
disturbance rejection and high accuracy guaranteed, a 
similar structure is applied in each loop, where the 
estimation error provided by EESO is constructed. 
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disturbance rejection and high accuracy guaranteed, a similar 
structure is applied in each loop, where the estimation error 
provided by EESO is constructed. Finally, the compound 
controller is implemented by integrating with the nominal 
controller for an open-loop system and observed based EESO 
controller in each loop.

3- Results and Discussion
To make the work more challenging, severe parametric 

perturbations are considered in this case, namely −10% 
uncertainties in structural parameters (including m ,S
, D , yI , and aω ), +50% uncertainties in aerodynamic 
coefficients CA and CN, as well as −50% uncertainty in pitch 
moment coefficient CM.

The results depicted in Fig. 3 indicate that given parametric 
perturbations make almost no difference to the proposed 
TLC-EESO autopilot, but excite severe oscillations in terms 
of the response curve of the EID-EESO when tracking the 
square wave command. Moreover, owing to its superiority 
of actively rejecting disturbances, the TLC-EESO autopilot 
can even tolerate up to ±75% aerodynamic coefficient 
perturbations, while in the same case, the acceleration under 
the EID-EESO autopilot goes unstable, as shown in Fig. 4

4- Conclusions
In this paper, a novel composite control scheme combined 

with the advantages of TLC and EESO observer is developed 
to address the attitude tracking problem of the air vehicle. 
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The results depicted in Fig. 3 indicate that given 
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the proposed TLC-EESO autopilot, but excite severe 
oscillations in terms of the response curve of the EID-
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The Bounded-Input, Bounded-Output (BIBO) stability and 
ultimate tracking error bound are rigorously analyzed based 
on the proposed robust TLC’s specific structure. It is proven 
that the ultimate upper bound of closed-loop tracking error 
monotonously decreases with the controller’s and EESO’s 
bandwidths. The simulations and comparative study are 
carried out to demonstrate that the proposed TLC-EESO 
method can obtain better tracking performance for tracking 
attitude command systems with internal and external 
perturbation.
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