
Amirkabir Journal of Mechanical Engineering

Amirkabir J. Mech. Eng., 54(6) (2022) 271-274
DOI: 10.22060/mej.2022.20462.7234

Experimental Study and Finite Element Simulation of Cutting Tool Temperature in 
Laser Assisted Machining
S. M. Nikouei, M. R. Razfar, M. Khajehzadeh*

Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran

ABSTRACT: The present paper has been dedicated to finite element simulation and experimental study 
of cutting tool temperature during laser-assisted machining. To achieve this objective, a finite element 
model of the processes has been developed for Inconel 718 super alloy and the results have been verified 
by experimental measurements of cutting forces and cutting tool temperature. In this regard, first of all, a 
finite element model of the laser-assisted turning process was developed and then an experimental setup 
was designed and manufactured. Finally, a series of experimental tests were arranged to achieve a proper 
range of process parameters and also to measure cutting forces and cutting tool temperatures during 
the machining process. Experimental results were then used to verify the results of the finite element 
model. Using the developed model, the effect of laser source power, cutting speed, and feed on cutting 
tool temperature were studied. According to the achieved results, using a laser heat source, in the range 
without microstructural effects, will lead to a 25% reduction in the average main component of cutting 
force and an 80% reduction in the average maximum temperature of the cutting tool in comparison to 
conventional turning.
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1- Introduction
Laser assisted machining is a process that uses a laser 

source, Fig. 1, to increase workpiece local temperature and 
thereby decrease the strength of the material which is to be 
removed; therefore lower values of cutting forces and cutting 
temperatures are expected [1].

According to the previous studies [1-2], thermo-
mechanical aspects of the workpiece have been widely 
studied by numerical and experimental techniques, but 
limited works have considered theoretical and experimental 
aspects of cutting tool temperature in laser-assisted machining 
processes. Therefore, in this research work, a finite element 
model has been developed to study the effects of laser power, 
cutting speed, and feed on cutting tool temperature in Laser-
Assisted Machining (LAM) of Inconel 718.

2- Methodology
In this research, using Deform 3D, a coupled thermo-

mechanical finite element model has been developed to study 
cutting tool temperature, Fig. 2.

Because in the LAM process, the laser beam is focused on 
the workpiece, it can be assumed that due to the laser heat flux 
entering the workpiece, the upper surface of the workpiece is 
preheated and is affected by a constant temperature (TLaser), 

so according to the mathematical formulation introduced in 
Kashani et al. [2], to determine the temperature of different 
points on the workpiece being exposed to laser radiation, in 
proportion to the coexistence of laser power, cutting speed 
and feed, the surface temperature of the un-deformed chip 
is calculated and is considered as the boundary condition 
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In this research, Inconel 718 superalloy has been 
selected as workpiece material, Table 1; the elastic-
plastic behavior of this material can be described by the 
Johnson-Cook model. Therefore, Johnson-Cook 
parameters including A, B, C, m, and n are gathered in 
Table 2. 

Table 1. Physical properties of Inconel 718 [3]. 
Elastic Module Tensile Strength Density 

GPa MPa kg/m3 
177 655 8220 

Specific Heat Melting Point Poison ratio 
520 J/kgK 1593 K 0.273 

 
Table 2. Johson-Cook constants for Inconel 718 [3]. 

n m C B (MPa) A (MPa) 
0.5189 1.2861 0.0085 699 1108 

 
 

3. Results and Discussion 
3.1 Main cutting force 
As shown in Fig. 3, the use of 350 and 500W laser 
powers have respectively reduced the cutting forces by 
11.5 and 23% compared to conventional turning. This 
decrease is justified by the decrease in material flow 
stress with increasing temperature. 
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Fig. 1. Experimental setup of laser assisted machining.
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governing the surface of the workpiece in the Finite Element 
Model (FEM) model according to Fig. 2.
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(0.97, 4.3) mm is considered on the cutting tool rake face and 
the thermocouple is embedded at the mentioned point and the 

time history of temperature at this point is compared using 
the experimental method and finite element model.
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Fig. 3. FEM and Experimental Results on the effect of laser power 
and feed on Main Cutting Force (Vc=1.86 m/s). 

 
3.2 Cutting tool temperature 
As a general trend, with increasing laser power, the 
cutting tool temperature decreases; this decrease is 
justified by the decrease in material flow stress with 
increasing temperature and finally decreasing 
temperature in the primary cutting zone. Therefore, the 
cutting tool temperature decreases due to the lower 
amount of heat generation in cutting zones, Fig. 4. 

 
(a) af=0.14 mm/rev and Vc=1.31 m/s 
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Fig. 4 Effects of power, speed, and feed on Tool Temperature. 

4. Conclusion 
The following conclusions can be achieved: 
1. A finite element model of the laser-assisted 
machining process was developed and there is a good 
agreement between experimental results and the finite 
element model. 
2. By increasing laser power, the main component of 
cutting force decreases. 
3. By increasing laser power, the cutting tool 
temperature decreases. 
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compared to conventional turning. This decrease is justified 
by the decrease in material flow stress with increasing 
temperature.

3- 2- Cutting tool temperature
As a general trend, with increasing laser power, the cutting 

tool temperature decreases; this decrease is justified by the 
decrease in material flow stress with increasing temperature 
and finally decreasing temperature in the primary cutting 
zone. Therefore, the cutting tool temperature decreases due to 
the lower amount of heat generation in cutting zones, Fig. 4.

4- Conclusion
The following conclusions can be achieved:
1. A finite element model of the laser-assisted machining 

process was developed and there is a good agreement between 
experimental results and the finite element model.

2. By increasing laser power, the main component of 

cutting force decreases.
3. By increasing laser power, the cutting tool temperature 

decreases.
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