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ABSTRACT: To study the energy absorption features in composite structures, it is necessary to identify 
the functional mechanisms and determine the impact of each on the energy absorption. In this study, 
the behavior of composite tubes under compressive axial load was investigated by acoustic emission 
monitoring. To make a filament wound composite tube, the optimal parameters were first determined 
using literature. In determining the optimal parameters, due to the uncertainty effect of fiber angles, from 
the intermediate range, the angle of 35 degrees was selected. Then, to ensure the experimental results, 
the finite element simulation method and the use of the VUMAT subroutine based on the 3D Hashin 
criterion were used. The results showed that the dominant failure mode was a local shear failure and 
lateral damage, which first caused the plastic deformation of the sample and then caused the growth of 
cracks in the fiber direction. Also, the highest percentage of failure mechanisms are matrix cracking, 
fiber breakage, and separation of fibers from the matrix, respectively. Finally, the use of the developed 
subroutine to predict the behavior of the structure was useful and was able to predict the behavior of the 
composite tube even after the maximum crushing force.
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1- Introduction
With increasing speed limits in cars, ensuring failure 

against impact is one of the most important points in the 
design of structures. Thin-walled structures are widely used 
for this purpose, and many efforts are currently being made to 
increase energy absorption capacity. Due to the fact that metal 
tubes under buckling axial load are degraded and have a high 
weight, the use of composite tubes due to their lightweight 
and progressive mode is the most suitable option for energy 
absorbers [1]. 

The filament winding process is one of the most suitable 
production processes for cylindrical structures, which is 
usually used for the production of pipes, shafts, pressure 
vessels, etc. This process has high accuracy for positioning 
the fibers, controlling the volume fraction of the fibers, and 
making the desired angles (see Fig. 1).

HIWA model pressure device with a capacity of 5 tons 
was used to load the samples. According to Fig. 2, the test 
specimens were tested at a speed of 2 mm/min, and AEWin 
software and PCI-2 system with a sampling rate of 2 MHz 
were used to record acoustic emission data. The amount of 
displacement and load was continuously recorded by the 
testing machine and the Dino-Lite digital camera was used 
to capture the progressive failure of the composite tube (see 
Fig. 2).

2- Methodology
In order to calculate the percentage of failure mechanisms 

created in the structure, in addition to using the components 
of acoustic emission signals, it is necessary to use complex 
methods to process these signals. Fast Fourier transform and 
wavelet transform can be considered as common methods 
of signal processing. Instead of using the sine and cosine 
functions used in Fourier transform, which focuses on only 
one frequency, the wavelet transform uses functions as 
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From a mathematical point of view, discrete wavelet 
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     where ( )f t , ( , )DWT i k , and i  represent the desired 
signal, wavelet conversion coefficients, and 
decomposition level, respectively. Also, k ,   and *
represent the time domain, the mother wavelet transform 
and mixed  conjugate [2, 3].  Due to the fact that in 
discrete wavelet transform, high-frequency components 
are not decomposed, part of the data is deleted and not 
analyzed. In this research, in order to analyze all the 
components of the signal, packet wavelet transform has 
been used. The working principle of this method is that, 
at the signal decomposition levels, in addition to 
generalities, the signal detail section is also divided into 
two sections, generalities, and details, each component 
having a specific frequency range. Therefore, each signal 
can be decomposed into a set of wavelet components, 
each with its own frequency range. Since the different 
distribution of energy at each level corresponds to a 
particular failure or failure, the energy percentage of each 
of the decomposed components is obtained using the 
energy criterion. 
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wavelets consisting of several different frequencies. Discrete 
wavelet transform is one of the most widely used types of 
wavelet transform in which the main signal is broken down 
into components called generalities and details. In the next 
levels, the signal generalities are again divided into two parts, 
details and generalities, and this signal decomposition process 
continues to the desired level. From a mathematical point of 
view, discrete wavelet transform is defined as follows:
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with an increase in the number of hits. Finally, the fourth or 
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composite tubes were investigated by experimental methods, 
acoustic emission technique, and finite element simulation. It 
was found that:

The most common mode of failure in filament-wound 
tubes under this angle is local failure due to lateral damage 
and compressive deformation, which mainly begins with the 
separation of fibers from the matrix at the head of the sample, 
and then due to the inability to expand separation continued.

After local deformation creation, the crack begins to grow 
from that point along the twist angle of the fibers, eventually 
causing the specimen to cut and the upper part to sink into the 
lower part, and the crushing continues progressively.

The acoustic emission method was also used to validate 
the experimental results. The results of the observations 
showed that the behavior of the force-displacement diagram 
is completely consistent with the acoustic diagrams so that 
the force drop in the diagram is always associated with the 
release of acoustic energy, the amount of this energy varies 
depending on the type of failure mechanism that occurs in 
the sample.

Examination of the amplitude of acoustic signals showed 
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fibers from the matrix, matrix cracking, and fiber breakage, 
respectively. These failure mechanisms are recognizable 
from the amplitude range of acoustic signals.
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it is located and whether the component is a high 
frequency or low frequency. 

Fig. 3. Frequency distribution percentage of each of 
the 8 components resulting from the decomposition of 

acoustic emission signals 
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which mainly begins with the separation of 
fibers from the matrix at the head of the sample, 
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2. After local deformation creation, the crack 
begins to grow from that point along the twist 
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force drop in the diagram is always associated 
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4. Examination of the amplitude of acoustic 
signals showed that the onset of failure in 
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cracking of the matrix and gradually occurs with 
increasing stress applied to the structure, 
separating the fibers from the matrix, matrix 
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5. 3D Hashin failure criterion was used in the 
simulation of composite tubes. The results of 
finite element modeling showed that the 3D 
Hashin criterion used predicts the onset and 
growth of failure well. 
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