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ABSTRACT: Due to the need for orthopedic surgery, the mechanical behavior of the cortical bone 
in cyclic loading and physiological strain rate has been investigated. The emphasis is on developing 
a structural law that can establish the behavior during loading, unloading and reloading observed in 
experiments. These models will be formulated by combining rheological elements and energy principles. 
First, two one-dimensional models independent of the strain rate are formulated, one with one damage 
variable and the other with two different damage variables in tension and compression, are examined, and 
using laboratory data, the coefficients of each model are obtained. By comparing the simulation results 
and laboratory data, the necessary modifications have been made to the models. Finally, by combining 
the Bresler-Pister anisotropic yield criterion and the one-dimensional model independent of the rate 
associated with the two damage variables, the corresponding three-dimensional model was obtained. 
This three-dimensional model was implemented in the form of an explicit finite element method and the 
result showed acceptable compatibility with the simulation results of the one-dimensional model and 
experimental data. This three-dimensional model will be suitable for simulating complex geometries. 
The coefficient of determination for one-dimensional models RI  , RI ±  , RI  , and RI ±  has been 
modified and the three-dimensional model has obtained values of 0.882174, 0.965665, 0.995508, 
0.996279, and 0.984866, respectively.
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1- Introduction
The mechanical behavior of bone varies according to the 

mechanical load it is exposed to, and the effect of its response 
depends largely on how the load is applied. Garcia has 
calculated the structural laws of elastic-plastic-damage, which 
are rate-independent and physiologically strain-dependent, 
and has used tensile testing to load, load, and reload during 
the structural process [1]. In another study, Garcia et al. [2] 
proposed a three-dimensional structural law describing the 
mechanical behavior of elastoplastic- damage, independent 
of strain rate, with respect to the analysis of the implant-bone 
system. Garcia et al. [3] Continued their research with a one-
dimensional structural law independent of the strain rate for 
the  cortical bone to simulate the accumulation of damage 
during tensile or compressive loading. 

2- Methodology
The  Rheological arrangement of all one-dimensional 

models consists of a series of connections of a main elastic 
spring with a damage element, the damage element itself 
consisting of a parallel connection of a vulnerable sub-spring 
with a plastic barrier. The sub-elastic spring in models RI  
and RI ±  suffers from rate-independent damage, Fig. 1.

2- 1- Model RI
The elastic modulus of healthy cortical bone is positive 

(
0 0E > ). Three damage-dependent functions, plastic 

hardening function ( )pS D 0≥  and damage hardening 
functions ( ) 0DS D+ >  and ( ) 0DS D− >  are used [1]:

Numerical Investigation of Elastoplastic and Damage 
Behavior of Cortical Bone by Applying a New Damage 

Model 
 

M. Nasiri 1, M. Zolfaghari1, V. Tahmasbi2, H. Heydari3  
 

1 Department of Mechanic Engineering, Arak University, Arak, Iran 
2 Department of Mechanic Engineering, Arak University of Technology, Arak, Iran 

3 Department of Mechanic Engineering, Shahrekord University, Shahrekord, Iran 
Abstract 
Due to the need for orthopedic surgery, the mechanical behavior of the cortical bone in cyclic loading and 
physiological strain rate has been investigated. The emphasis is on developing a structural law that can establish the 
behavior during loading, unloading and reloading observed in experiments. These models will be formulated by 
combining rheological elements and energy principles. First, two one-dimensional models independent of the strain 
rate are formulated, one with one damage variable and the other with two different damage variables in tension and 
compression, are examined, and using laboratory data, the coefficients of each model are obtained. By comparing 
the simulation results and laboratory data, the necessary modifications have been made to the models. Finally, by 
combining the Bresler-Pister anisotropic yield criterion and the one-dimensional model independent of the rate 
associated with the two damage variables, the corresponding three-dimensional model was obtained. This three-
dimensional model was implemented in the form of an explicit finite element method and the result showed 
acceptable compatibility with the simulation results of the one-dimensional model and experimental data. This three-
dimensional model will be suitable for simulating complex geometries. The coefficient of determination for one-
dimensional models RI , RI  , RI , and RI   has been modified and the three-dimensional model has obtained 
values of 0.882174, 0.965665, 0.995508, 0.996279, and 0.984866, respectively. 

1. Introduction 
The mechanical behavior of bone varies according to the mechanical load it is exposed to, and the effect of its 
response depends largely on how the load is applied. Garcia has calculated the structural laws of elastic-plastic-
damage, which are rate-independent and physiologically strain-dependent, and has used tensile testing to load, load, 
and reload during the structural process [1]. In another study, Garcia et al. [2] proposed a three-dimensional 
structural law describing the mechanical behavior of elastoplastic- damage, independent of strain rate, with respect 
to the analysis of the  implant-bone system. Garcia et al. [3] Continued their research with a one-dimensional 
structural law independent of the strain rate for the  cortical bone to simulate the accumulation of damage during 
tensile or compressive loading.  

2. Methodology 
The  Rheological arrangement of all one-dimensional models consists of a series of  connections of a main elastic 
spring with a damage element, the damage element itself consisting of a parallel connection of a vulnerable sub-
spring with a plastic barrier. The sub-elastic spring in models RI  and RI   suffers from rate-independent damage, 
Fig. 1. 

2.1. Model RI  
The elastic modulus of healthy cortical bone is positive ( 0 0E  ). Three damage-dependent functions, plastic 

hardening function ( )pS D 0  and damage hardening functions ( ) 0DS D+   and ( ) 0DS D−   are used [1]: 

( ) ( )( )1- exp -p pS D lD=  (1) 
( ) ( )( )( )0 1 1-exp -D D DS D S kD = +  (2) 

χ 0P   and 0l   Plastic hardening coefficients 0
DS + and 0- 0DS   are the initial stress threshold stresses in tension and 

pressure, respectively. Dχ  and 0k   are the hardness coefficients of the damage. 
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2.2. Model RI   
In this model, two damage variables are used and the damage situation is described by two variables, tensile damage 
D+

 and compressive damage D−  [1]: 

( ) ( )( )- -1- exp -p pS D lD+ =  (3) 
( ) ( )( )p pS D χ 1 exp lD− + += − −  (4) 
( ) ( )( )( )( )- 0 -, 1 1-exp -D D DS D D S k D D +  += + +  (5) 

3. Determining the Coefficients of One-Dimensional Models and Numerical Simulations 
The coefficients of each model are calculated according to the experimental data of cortical bone [2] which includes 
the values of stress and strain in a tensile-compressive cycle with a strain rate of 3 13.4 10 sec − −=  , Table 1 . 

RI and  RICoefficients of models  .Table 1 

RI  RI Unit Coefficients 
25000 25000 MPa 0E 

2 4 MPa D
0+S 

3.8 9.6 MPa 0
DS −

 
79.9 52.9 MPa pχ 
65 19.8 - Dχ 
15 15.3 - k 

21.9 6.1 - l 
The results of numerical simulation of one-dimensional models RI  and RI   in comparison with experimental 
data are plotted in Figs. 2 and 3, respectively, and the coefficient of determination for the one-dimensional model RI 
and RI ± are 0.882174 and 0.965665, respectively. Consider the effect of velocity on the plastic element and on the 
damage element. 

   
Fig. 1. Arrangement of one-

dimensional rheological 
elements  

Fig. 2. Stress-strain curve of Model RI  Fig. 3. Stress-strain curve of Model RI   

The model RI   is more accurate in predicting experimental results. Simulations of two models will be performed 
on the control strain load cycle. As shown in Fig. 4, the plastic part of the reloading pattern in the stress-strain cycle 
curve of the Model RI   is along the coordinate origin, but the Model RI  lacks this feature specific to bone tissue. 
The reason for this difference is the number of damage variables and the dependence of the plastic hardness on the 
damage variables. 

(a) (b) 
Fig. 4. Stress-strain cyclic curve of the model RI  (b) and model RI (a) with three modes of deformation: elastic mode (C), 

damage mode (A), and plastic mode (B). 
3.1. Modification of one-dimensional models 

The one-dimensional models of the previous section have a relatively good ability to predict experimental data, but 
not in the compression section. In the compressive part, the slope of the model curve is not compatible with the 
slope of the test curve. This is because, in the proposed models, the recovery of the Young modulus in the transition 
from tension to compression is not considered. This effect can be considered by using a correction factor ( w ) in the 

Fig. 1. Arrangement of one-dimensional rheological 
elements 
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X÷ 0P ≥  and 0l >  Plastic hardening coefficients 
0
DS +

and 
0- 0DS >  are the initial stress threshold stresses in tension 

and pressure, respectively.X D÷  and 0k >  are the hardness 
coefficients of the damage.

2- 2- Model RI ±
In this model, two damage variables are used and the 

damage situation is described by two variables, tensile 
damage D+

 and compressive damage D−
 [1]:
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3- Determining the Coefficients of One-Dimensional 
Models and Numerical Simulations

The coefficients of each model are calculated according to 
the experimental data of cortical bone [2] which includes the 
values of stress and strain in a tensile-compressive cycle with 

a strain rate of 3 13.4 10 secε − −= × , Table 1.
The results of numerical simulation of one-dimensional 

models RI  and RI ±  in comparison with experimental data 
are plotted in Figs. 2 and 3, respectively, and the coefficient 
of determination for the one-dimensional model RI and RI ± 
are 0.882174 and 0.965665, respectively. Consider the effect 
of velocity on the plastic element and on the damage element.

The model RI ±  is more accurate in predicting 
experimental results. Simulations of two models will be 
performed on the control strain load cycle. As shown in Fig. 
4, the plastic part of the reloading pattern in the stress-strain 
cycle curve of the Model RI ±  is along the coordinate 
origin, but the Model RI  lacks this feature specific to bone 
tissue. The reason for this difference is the number of damage 
variables and the dependence of the plastic hardness on the 
damage variables.
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3. Determining the Coefficients of One-Dimensional Models and Numerical Simulations 
The coefficients of each model are calculated according to the experimental data of cortical bone [2] which includes 
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The results of numerical simulation of one-dimensional models RI  and RI   in comparison with experimental 
data are plotted in Figs. 2 and 3, respectively, and the coefficient of determination for the one-dimensional model RI 
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Fig. 1. Arrangement of one-

dimensional rheological 
elements  

Fig. 2. Stress-strain curve of Model RI  Fig. 3. Stress-strain curve of Model RI   

The model RI   is more accurate in predicting experimental results. Simulations of two models will be performed 
on the control strain load cycle. As shown in Fig. 4, the plastic part of the reloading pattern in the stress-strain cycle 
curve of the Model RI   is along the coordinate origin, but the Model RI  lacks this feature specific to bone tissue. 
The reason for this difference is the number of damage variables and the dependence of the plastic hardness on the 
damage variables. 
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dimensional. The Bresler-Pister yield criterion is used for the application use of the model. This criterion is used to 
express a yield function that has different tensile and compressive strengths under multi-axis loading  [4] The 
numerical algorithm code of the 3D model RI   is implemented in the form of VUMAT subroutine related to 
ABAQUS software. Loading is in the form of displacement control. The bone sample is simulated as an axial 
symmetric model, Fig. 7. Comparing the two simulations of the Model RI  , it can be seen that the formulation of 
the 3D model is correct, Fig. 7. 
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determination for the three-dimensional model compared to the one-dimensional model is 0.984866 and the reasons 
for its difference are the effect of Poisson's ratio, isotropic elasticity in the three-dimensional model, and also the 
scalar damage variable. 
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The coefficients for each model are calculated by matching the laboratory data. In one-dimensional models, a 
correction factor for the modulus is considered. This coefficient creates the phenomenon of recovery of the material 
hardening in the transition from the tensile state to the compression resulting from the closure of the microcracks in 
the stress-strain curve. By combining the Bresler-Pister yield criterion and the rate-independent one-dimensional 
model, a corresponding three-dimensional model was obtained. This three-dimensional model is implemented in the 
form of an explicit finite element method and the result is acceptable with the simulation results of the one-
dimensional model and experimental data. This three-dimensional model will be suitable for simulating complex 
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a relatively good ability to predict experimental data, but not 
in the compression section. In the compressive part, the slope 
of the model curve is not compatible with the slope of the test 
curve. This is because, in the proposed models, the recovery 
of the Young modulus in the transition from tension to 
compression is not considered. This effect can be considered 
by using a correction factor (w ) in the definition of Young’s 
modulus of the damaged material, Table 2. The results of 
numerical simulation of modified models RI  and RI ±  in 
comparison with experimental data are shown in Figs. 5 and 
6. The coefficient of determination for the modified RI  and 
RI ±  one-dimensional models is 0.995508 and 0.996279 
and the reason is to consider the effect of velocity on the 
plastic element and the damage element.

4- Results and Discussion
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For application, the one-dimensional damage model 
independent of rate RI ±  will be generalized to three-
dimensional. The Bresler-Pister yield criterion is used for the 
application use of the model. This criterion is used to express 

a yield function that has different tensile and compressive 
strengths under multi-axis loading4[  ] The numerical 
algorithm code of the 3D model RI ±  is implemented in the 
form of VUMAT subroutine related to ABAQUS software. 
Loading is in the form of displacement control. The bone 
sample is simulated as an axial symmetric model, Fig. 7. 
Comparing the two simulations of the Model RI ± , it can be 
seen that the formulation of the 3D model is correct, Fig. 7.
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to two causes, one due to the effect of the Poisson ratio on the 
three-dimensionality and the effect of normal stress on the 
axial direction of lateral strains, and another due to numerical 
calculation errors in plastic yield and damage threshold 
functions. These two reasons make the three-dimensional 
model RI ± , unlike the one-dimensional model RI ± , not 
pass through the origin of the coordinates in the last stage of 
the cyclic loading, and at a strain equal to zero, the stress is not 
equal to zero. The coefficient of determination for the three-
dimensional model compared to the one-dimensional model 
is 0.984866 and the reasons for its difference are the effect of 
Poisson’s ratio, isotropic elasticity in the three-dimensional 
model, and also the scalar damage variable.
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definition of Young's modulus of the damaged material, Table 2. The results of numerical simulation of modified 
models RI  and RI   in comparison with experimental data are shown in Figs. 5 and 6. The coefficient of 
determination for the modified RI  and RI   one-dimensional models is 0.995508 and 0.996279 and the reason is 
to consider the effect of velocity on the plastic element and the damage element. 
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4. Results and Discussion 
4.1. Make three dimensions 

For application, the one-dimensional damage model independent of rate RI   will be generalized to three-
dimensional. The Bresler-Pister yield criterion is used for the application use of the model. This criterion is used to 
express a yield function that has different tensile and compressive strengths under multi-axis loading  [4] The 
numerical algorithm code of the 3D model RI   is implemented in the form of VUMAT subroutine related to 
ABAQUS software. Loading is in the form of displacement control. The bone sample is simulated as an axial 
symmetric model, Fig. 7. Comparing the two simulations of the Model RI  , it can be seen that the formulation of 
the 3D model is correct, Fig. 7. 

(a) 
(b) 

Fig. 7. (a) Axial displacement contour for 3D model RI ±, (b) Comparison of simulation results of three-dimensional model RI ± 
with one-dimensional model RI ±. 

Slight differences between the two curves can be related to two causes, one due to the effect of the Poisson ratio on 
the three-dimensionality and the effect of normal stress on the axial direction of lateral strains, and another due to 
numerical calculation errors in plastic yield and damage threshold functions. These two reasons make the three-
dimensional model RI  , unlike the one-dimensional model RI  , not pass through the origin of the coordinates in 
the last stage of the cyclic loading, and at a strain equal to zero, the stress is not equal to zero. The coefficient of 
determination for the three-dimensional model compared to the one-dimensional model is 0.984866 and the reasons 
for its difference are the effect of Poisson's ratio, isotropic elasticity in the three-dimensional model, and also the 
scalar damage variable. 

5. Conclusion 
Two rate-independent one-dimensional models with a combination of rheological elements have been investigated. 
The coefficients for each model are calculated by matching the laboratory data. In one-dimensional models, a 
correction factor for the modulus is considered. This coefficient creates the phenomenon of recovery of the material 
hardening in the transition from the tensile state to the compression resulting from the closure of the microcracks in 
the stress-strain curve. By combining the Bresler-Pister yield criterion and the rate-independent one-dimensional 
model, a corresponding three-dimensional model was obtained. This three-dimensional model is implemented in the 
form of an explicit finite element method and the result is acceptable with the simulation results of the one-
dimensional model and experimental data. This three-dimensional model will be suitable for simulating complex 
geometries. 
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5- Conclusion
Two rate-independent one-dimensional models with a 

combination of rheological elements have been investigated. 
The coefficients for each model are calculated by matching 
the laboratory data. In one-dimensional models, a correction 
factor for the modulus is considered. This coefficient creates 
the phenomenon of recovery of the material hardening in the 
transition from the tensile state to the compression resulting 
from the closure of the microcracks in the stress-strain curve. 
By combining the Bresler-Pister yield criterion and the rate-
independent one-dimensional model, a corresponding three-
dimensional model was obtained. This three-dimensional 
model is implemented in the form of an explicit finite element 
method and the result is acceptable with the simulation 
results of the one-dimensional model and experimental data. 
This three-dimensional model will be suitable for simulating 
complex geometries.
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