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ABSTRACT: The numerical investigation of Transition is one of the challenging issues in turbulence 
modeling. In the present study, the coefficients of the γ-Reθ model are modified based on the physics 
of internal flow transition to capture the entrance length properly. To validate the model, the internal 
flow is simulated using six test cases. A 3D duct, two smooth axisymmetric pipes, a 3D stenosis pipe, 
two parallel plates, and the backward-facing step configurations are considered at different Reynolds 
numbers from 2×103 to 3×105. The flow variables, including the average velocity field, friction factor, 
fully developed friction factor, and the reattachment length are compared against the experimental, 
theoretical and large eddy simulation results. By comparing the results of average velocity against the 
semi-empirical relations and experimental data using new coefficients, it is observed the model can 
estimate the entrance length in accordance with experiments. The earlier coefficients lead to a reduction 
of entrance length by increasing the Reynolds number. Furthermore, the error percentages reduce by 
more than 7.6 and 26.7 percent using new coefficients rather than earlier models for fully developed 
friction factor and reattachment length, respectively. 
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1- Introduction
The process of changing from laminar to turbulent 

(turbulentization) flow and vice versa (laminarization) 
is called transition. There are three different transition 
mechanisms such as separation-induced transition, natural 
transition, and bypass transition. The first one occurs due to 
the exponential growth of Tollmien–Schlichting waves and 
leads to nonlinear breakage to turbulent [1]. The second is 
affected by a high turbulence intensity of the free stream and is 
called bypass transition [2]. The last transition mechanism is 
separation-induced transition and appears where the laminar 
boundary layer is separated by the adverse pressure gradient 
and transition expands inside the separated shear layer [3]. 
The correlation-based model,γ-Reθ, was developed by Menter 
et al. [4] to cover the deficiencies of the earlier correlation-
based models. the new model uses two transport equations 
based on local variables (e.g. local pressure gradient, local 
vorticity, local distance to the wall, and so on) and therefore 
is compatible with modern Computational Fluid Dynamics 
(CFD) codes. The model was validated against the basic test 
cases, such as a two-dimensional turbine blade, and good 
agreement was achieved against experimental data. Further 
validation of the model was conducted by Langtry and 
Menter [5] for a wide variety of test cases such as 2D airfoils, 
a 3D element flap, a 3D transonic wing, and a full helicopter 

configuration. Investigation of transition for external flow 
received heightened attention and different models including, 
the eN method, experimental correlation, and physical-based 
models developed to predict external transition characteristics. 
However, minimal attention is given to analyzing internal 
transition. The lack of an appropriate transition model for 
internal flows along with necessary experimental correlations 
leads to modification of the external transition model. 
Abraham et al. [6] modified two tunable coefficients ce2 and 
cθt of the external model based on the fully developed friction 
factor inside a pipe. ce2 and cθt are multipliers of Eγ2 and Pθt 
terms for the external model.

In the present paper in contrast to Abraham, the tunable 
constants of Menter’s model (ce2 and cθt) are modified based 
on the developing region characteristics such as the entrance 
length of flow inside a pipe at a variety of Re numbers. To 
validate the new coefficients and proves they are independent 
of geometry, the flow inside six different test cases is 
simulated. Each test case covers one aspect of the transition 
phenomenon. Therefore, the universality of new coefficients 
is proved. Some flow variables, including the average velocity 
field, the Turbulent Kinetic Energy (TKE), the length of the 
entrance region, the reattachment length, the friction factor, 
and the fully developed friction factor are investigated at 
different Reynolds numbers from 2´103 to 3´105. The results 
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are compared against available data, including experimental, 
theoretical, and Large Eddy Simulation (LES).

2- Methodology
The flow is incompressible and unsteady. The governing 

equations of the unsteady flow including the continuity, 
momentum, transition, and additional equations for turbulence 
closure are given in Eqs. (1) to (6):
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Six different Test Cases (TC) are considered to evaluate 
the modified model capabilities including two 
axisymmetric pipes, a 3D duct, a 3D stenosis pipe, a 
backward-facing step, and parallel plates. 

3. Results and Discussion  

An axisymmetric pipe is used to replace the original 
coefficients with the suitable ones for internal flows. 
Figs. 1(a) and 1(b) show the variations of centreline 
velocity in terms of axial location for two different sets 
of coefficients. The growth of boundary layers leads to 
an acceleration of the flow core and concurrent with the 
flow recovery, the value of the centerline velocity 
reduces and becomes constant in the fully developed 
region. By increasing Reynolds number, the location of 
a fully developed region moves downstream due to 
thinning of boundary layers. However, the original 
model shows the reverse movement of the fully 
developed region by increasing the Reynolds number 
which is in contrast to experiments. Replacing the 
original coefficients with the new ones modifies the 
unsuitable behavior of the original models and follows 
the trend of experiments. The high value of ce2 causes 
an imbalance between transition and destruction sources 
to prevent the growth of transition sources artificially. 
Therefore, a lag arises while switching from one regime 
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which is in contrast to experiments. Replacing the 
original coefficients with the new ones modifies the 
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4. Conclusions 

In this paper, the original coefficients were replaced by 
the new ones, and the procedures of coefficient 
adjustment were performed according to the physical 
characteristics of the internal flow such as entrance 
length. The ability of the new modified transitional SST 
model was evaluated for six computational domains. 
The error percentages of the new modified model in all 
simulations were lower than those of the others. 
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the entrance length and delay to bypass transition are related 
to the high value of ce2 in the original model. At Re ≥ 2×105 
along with a range of turbulence intensity (I) from 0.03 to 
0.05, laminar and transition regions disappear and the original 
model operates as a fully turbulent model. However, the fully 
turbulent flow inside a pipe occurs at Re ≥1.3×104 [8], where 
the slug structures form completely. The difference between 
the two Reynolds numbers 1.3×104 and 2×105 is too much 
and implies the existence of a large lag in the original model.

4- Conclusions
In this paper, the original coefficients were replaced by 

the new ones, and the procedures of coefficient adjustment 
were performed according to the physical characteristics of 
the internal flow such as entrance length. The ability of the 
new modified transitional SST model was evaluated for six 
computational domains. The error percentages of the new 
modified model in all simulations were lower than those of 
the others.
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