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ABSTRACT: Due to the high fatalities of head-on accidents, the design of intelligent systems to 
prevent such severe collisions is essential. In this study, path planning for head-on collision avoidance 
with a deviated vehicle from the opposite lane has been investigated. The main approach is based on a 
model predictive controller with 2 seconds of prediction horizon and a linearized prediction model with 
low errors near the operational conditions. A conservative method is used for lateral motion prediction 
of the deviated vehicle and based on that, the collision avoidance constraints of the model predictive 
planner are simply modeled by a new approach. Moreover, a novel method to choose the proper swerve 
direction of evasive maneuver is proposed. This method is based on keeping the ego vehicle away from 
dangerous directions and has different criteria for far and close encounters. The final algorithm is capable 
to control the steering of the prediction model with a constrained lateral acceleration and calculates safe 
and maneuverable paths for the aforementioned scenario. Four simulations are conducted to validate the 
algorithm in far and close encountering, and critical conditions of choosing swerve direction. Results 
show the robustness of the path planner, even to sudden deviations at close distances and with high 
lateral accelerations.
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1- Introduction
Over the last decade, the development of perception 

systems, data fusion, and electromechanical actuators in 
the automotive industry, has paved the way for emerging of 
intelligent collision avoidance systems for critical situations. 
One of these situations is facing a deviated vehicle on a two-
way road which can cause a severe head-on collision (Fig. 
1). Almost 10 percent of global road fatalities are due to such 
accidents 

The key aspect of collision avoidance systems focuses 
on planning real-time, safe, and maneuverable paths. Among 
different approaches of path planning for intelligent vehicles, 
compared and classified in [1], methods based on optimization 
and Model Predictive Control (MPC) can deal with challenges 
like constraints, moving obstacles, smoothness of paths, and 
uncertainties and have been adopted in many recent studies. 

For MPC path planners, different prediction models 
have been considered in the literature. Some researchers use 
simple point-mass models which cannot properly emulate 
the vehicle’s motion, especially at high speeds and severe 
maneuvers [2]. In the second group, linearized kinematic 
[3, 4] or dynamic [5,6] models of vehicles are used with 
satisfactory results and high computational efficiencies. The 
final group of studies uses nonlinear kinematic or dynamic 
vehicle models which are more precise, but impose a high 

computational burden and may need the reduction of 
prediction horizon or increase of sampling time [7, 8]. 

The main challenge of using MPC as a path planner 
in evasive maneuvers is to define collision avoidance 
constraints and three common approaches exist. The first 
approach which is more common consists of using linear 
constraints to decompose a non-convex region into convex 
sub-regions around the obstacles and solve the optimization 
problem in those sub-regions [2, 4, 6]. The second approach 
uses potential fields with the challenge of choosing suitable 
functions to precisely define the boundary of obstacles [3, 5]. 
The third approach uses distance functions to define nonlinear 
and non-convex constraints with high computational costs [7, 8].
Despite high fatalities of head-on collisions, the design of 
intelligent systems to avoid or mitigate such accidents has 
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Fig. 1. Facing a deviated vehicle from the opposite lane and some of its possible and uncertain maneuvers. 

 

 

  

Fig. 1. Facing a deviated vehicle from the opposite lane 
and some of its possible and uncertain maneuvers.
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not yet been investigated and almost all researches in the 
field of collision avoidance are focused on avoiding rear-end 
collisions, pedestrians, and stationary obstacles on one way 
roads. So in the present study, an MPC path planner with a 
linear kinematic prediction model is designed, capable of 
calculating safe and maneuverable paths to avoid a head-
on accident with a deviated vehicle from the opposite lane. 
Dealing with high uncertainty in the future motion of the 
threat vehicle is challenging and two novel approaches are 
investigated to choose a safe swerve direction and define 
linear collision avoidance constraints for this problem.

2- Methodology
2- 1- MPC algorithm

A linear kinematic bicycle model of vehicle [3,4] is 
considered and the following discretized state space model is 
used as the prediction model of MPC: 

                                                                                             (1)

The model input is the angle of the front wheel and the 
state vector consists of lateral deviation and the heading angle 
of the ego vehicle with respect to the center line of the road. 
From Eq. (1), the sequence of future outputs and errors of the 
system can be simply derived, up to the prediction horizon 
and the quadratic cost function:

                                                                                             (2)

Can be defined. In Eq. (2), by rewriting the error vector 
based on future inputs, the constrained optimization problem 
can be formulated as follow:

                                                                                             (3)

With inequality constraints on inputs/states and 
constraining lateral acceleration with bounds of inputs.

2- 2- Collision avoidance constraints
At each time step, first, a conservative motion prediction 

of the threat vehicle is calculated with a time horizon of 0.7 
seconds and maximum lateral acceleration of ±0.7g. Then, the 
sample number of probable collisions (NCol) is estimated, and 
the lateral positions of the ego vehicle around the sample NCol 
are constrained to be outside of lateral space, occupied by the 
threat vehicle in 0.7 seconds (Fig. 2). If the estimated Time 
To Collision (TTC) is less than 0.7 second, the prediction 
horizon of threat vehicle reduces to TTC. 

2- 3- Swerve direction algorithm
To choose the suitable swerve direction of evasive 

maneuver, it is suggested that the future feasible positions of 
the ego vehicle, get farther from the motion line of the threat 
vehicle. Two sequences of feasible positions, limited by the 
lateral acceleration of ±0.7g for 1 second, are calculated for 
the ego vehicle and compared with each other, considering 
the motion line of the threat vehicle. Fig. 3 shows half of the 
possible cases for this approach.

3- Results and Discussion
To evaluate the performance of the system, two 

simulations are conducted, both simulating a close encounter 
with a relative distance of 45 meters at the beginning.

In the first simulation, the sensitivity of the direction 
algorithm is assessed. In this scenario, the threat vehicle 
enters the ego’s lane with a lateral acceleration of 0.35g, and 
the path of the threat vehicle and relative positions, make a 
critical case that puts the direction algorithm in a boundary 
situation. With a few centimeters of change in the initial 
lateral position of the threat vehicle, the direction algorithm 
can distinguish the difference and the planner can calculate 

Fig. 2. Collision avoidance constraints on future lateral positions of ego vehicle. 
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Fig. 2. Collision avoidance constraints on future lateral 
positions of ego vehicle.

Fig. 3. Suitable swerve direction with respect to the motion line of the threat vehicle. 
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Fig. 3. Suitable swerve direction with respect to the 
motion line of the threat vehicle.

Fig. 4. Sensitivity of direction algorithm and two distinct paths for two close initial Conditions. 
    

  
 
 

    

  
 
 

    

  
 
 

    

  
 
 

Fig. 4. Sensitivity of direction algorithm and two dis-
tinct paths for two close initial Conditions.

Fig. 5. Robustness of path planner to a sudden return with 0.7g lateral acceleration at a very close distance. 
    

  
 
 

    

  
 
 

    
  
 
 

    

  
 
 

Fig. 5. Robustness of path planner to a sudden return 
with 0.7g lateral acceleration at a very close distance.
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separate paths to left and right for each initial condition (Fig. 
4).

In the second simulation, the robustness of the path 
planner to severe direction change of threat vehicle at a very 
close distance is assessed. In this scenario, threat vehicle 
enters the ego’s lane, same way as first simulation. But when 
the relative distance is around 22 meters, it suddenly returns 
to its lane with 0.7g lateral acceleration (Fig. 5, maneuver B).

4- Conclusions
The present study is focused on using linear MPC as a 

path planner for head-on collision avoidance. Dealing with 
high uncertainty in threat vehicle’s motion is challenging and 
novel approaches are investigated to choose a safe swerve 
direction and define linear collision avoidance constraints for 
the problem. Simulation results show the robustness of the 
algorithm to sudden and highly accelerated (0.7g) deviations 
of threat vehicles, at very close distances. Moreover, the 
algorithm has a high sensitivity to choose suitable swerve 
direction and can calculate distinct safe paths to the left or 
right of the obstacle, with small changes in initial conditions.
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