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ABSTRACT: This paper analyzes the size-dependent vibration of nanoscale beams with simultaneously 
longitudinal and rotational motions based on nonlocal theory for the optimum design of nanoscale 
surgical robots. Also, for the first time, a parametric study is performed to explain the surface effects, 
viscoelastic-Pasternak foundations characteristics, thermal loads, geometric properties, symmetric 
and asymmetric cross-sections, axial and follower loads on the dynamics and stability of the system. 
Adopting the Galerkin discretization approach, the reduced-order dynamic model of the system is 
acquired. Also, analytical and numerical methods are exploited. To ensure the accuracy of the proposed 
model and method, the present study results are compared and validated with those of published articles. 
Stability maps and Campbell diagrams are drawn for different working conditions. The results showed 
that increasing the surface elastic modulus and residual stress improves the vibration frequencies and 
dynamic instability threshold. It is also found that with increasing system thickness/length, the axial 
velocity of static instability decreases/increases. In addition, it is observed that the system performance 
improves with increasing the elastic and shear coefficients of the foundation. The results of the present 
study significantly help designers and engineers control the vibration of bi-gyroscopic nanoscale robots.
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1- Introduction
Bi-gyroscopic structures play substantial roles in diverse 
engineering fields such as surgical robots, offshore, and 
electro-mechanics [1, 2]. Due to size reduction in engineering 
nano-devices, considering the surface effects plays an 
essential role in the dynamic modeling of nano-systems [3]. It 
is widely known that by miniaturizing the scale of structures, 
classical continuum theories cannot correctly estimate the 
dynamic characteristics of micro/nanoscale systems [4, 5]. 
The size-dependent vibrations and stability of rotating with 
axially moving nanobeams with symmetric and asymmetric 
cross-sections enclosed in a viscoelastic-Pasternak foundation 
under axial and follower forces by considering surface effects 
are studied. 

2- Problem Formulation
A schematic view of a nanobeam simply-supported beam 
with axial and spinning motion is given in Fig. 1.
The beam moves along its axial direction with constant 
velocity, U, and spins simultaneously with constant spin 
velocity, Ω. The beam is under an axial force, P, and distributed 
tangential force, q. It is assumed that the system is rested on 
a viscoelastic-Pasternak foundation with Coefficients of kw 
and kp, respectively. Also, the nanobeam is embedded in a 
viscous medium with a Coefficient of c. The strain energy of 
the nanobeam is given by [6]:
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where e0 and a are nonlocal parameters. Also, the kinetic 
energy of the system can be expressed as: 
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Furthermore, the work done by the effects of surface 
tension can be obtained as: 
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in which H  is different for rectangular and circular 
cross-sections. The work done by the foundation can be 
obtained as follows: 
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The dynamic governing equations of the system are 
obtained by exploiting Hamilton’s principle. To derive 
the dimensionless governing equations, the 
dimensionless parameters are defined, and we introduce 
two essential parameters of them: 
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in which η is the nonlocal parameter and λ is the inertial 
ratio in two transverse directions. By adopting the 
Laplace transform and Galerkin method, discretization of 
the system equations is given as: 
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where   jq t is the generalized dimensional coordinate, 

N is the number of essential functions, j  is the mode 

for the transverse displacement. The roots of the 
determinant of the coefficient matrix are system 
eigenvalues and can be computed in terms of influential 
factors of the system. The imaginary parts of system 
eigenvalues are considered as frequencies. If a vibration 
frequency becomes zero, static instability (divergence) 
happens. In addition, if the imaginary part of the 
eigenvalue and the system damping is nonzero and 
positive, respectively, the structure experiences dynamic 
instability. 

3. Results and Discussion  
Fig. 2 depicts the stability diagram of the system in the q-
Ω plane. As shown in Fig. 3, surface elastic modulus due 
to the stiffness-hardening effect can improve the system's 
stability. 
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According to Fig. 4, in asymmetric cross-sections, instead of 
a border of divergence instability, we have an instability area 
that, with a decrement of inertia ratio this instability area will 
increase.

4- Conclusions
For the optimum design of nano surgical robots, a detailed 
analysis of the dynamical configuration and structural 
stability of nanobeams with axial and spinning motions 
subjected to external axial and distributed tangential forces 
with asymmetric and symmetric rectangular and circular 
cross-sections is performed. Numerical and analytical 
procedures are applied to investigate the divergence and 
flutter instability conditions. It is found that when the system 
is rested on a foundation, the stiffness-hardening stability of 

the system enhances. It is demonstrated that when surface 
effects are considered, they induce a stabilizing effect on 
the system. The results showed that the asymmetric cross-
section has an area of divergence instability compared to a 
symmetric cross-section. With a decrease in the inertia ratio, 
the instability area will increase.

References
[1] Z.-X. Zhou, O. Koochakianfard, Dynamics of spinning 

functionally graded Rayleigh tubes subjected to axial and 
follower forces in varying environmental conditions, The 
European Physical Journal Plus, 137(1) (2022) 1-35.

[2] Ebrahimi-Mamaghani, Ali, Navid Mostoufi, Rahmat 
Sotudeh-Gharebagh, and Reza Zarghami. “Vibrational 
analysis of pipes based on the drift-flux two-phase flow 
model.” Ocean Engineering 249 (2022): 110917.

[3] H. Sarparast, A. Alibeigloo, V. Borjalilou, O. 
Koochakianfard, Forced and free vibrational analysis 
of viscoelastic nanotubes conveying fluid subjected to 
moving load in hygro-thermo-magnetic environments 
with surface effects, Archives of Civil and Mechanical 
Engineering, 22(4) (2022) 1-28.

[4] W. Xu, G. Pan, M.A. Khadimallah, O. Koochakianfard, 
Nonlocal vibration analysis of spinning nanotubes 
conveying fluid in complex environments, Waves in 
Random and Complex Media, (2021) 1-33.

[5] L. Lingling, M. Ruonan, O. Koochakianfard, Size-
dependent vibrational behavior of embedded spinning 
tubes under gravitational load in hygro-thermo-magnetic 
fields, Proceedings of the Institution of Mechanical 
Engineers, Part C: Journal of Mechanical Engineering 
Science, (2022) 09544062211068730.

[6] A. Ebrahimi-Mamaghani, A. Forooghi, H. Sarparast, A. 
Alibeigloo, M. Friswell, Vibration of viscoelastic axially 
graded beams with simultaneous axial and spinning 
motions under an axial load, Applied Mathematical 
Modelling, 90 (2021) 131-150

HOW TO CITE THIS ARTICLE
O. Koochakianfard, A. Alibeigloo, Nonlocal Vibration of Nanobeam Embedded in Viscoelas-
tic Pasternak Foundation with Longitudinal and Rotational Motions with Surface Effects, 
Amirkabir J. Mech Eng., 54(10) (2023) 447-450.

DOI: 10.22060/mej.2022.21234.7407

3 
 

 
Fig. 2. Stability diagram in the q-Ω plane 

 
Fig. 3 depicts Winkler-Pasternak foundation effects in 
the Ud-Ωd plane (divergence axial and rotational speeds). 
According to Fig. 4, the foundation has a practical impact 
on the system stability, but, compared to Winkler 
(elastic) foundation, Pasternak (shear) foundation has 
more impact on the stability of nanobeam due to 
stiffness-hardening.  

 
Fig. 3. Winkler-Pasternak foundation effect on the 

stability of the system in the Ud-Ωd plane 

Fig. 4 depicts different asymmetric cross-sections of the 
nanobeam effect on the stability in the Campbell 
diagram. According to Fig. 4, in asymmetric cross-
sections, instead of a border of divergence instability, we 
have an instability area that, with a decrement of inertia 
ratio this instability area will increase. 

4. Conclusions 

For the optimum design of nano surgical robots, a 
detailed analysis of the dynamical configuration and 
structural stability of nanobeams with axial and spinning 
motions subjected to external axial and distributed 
tangential forces with asymmetric and symmetric 
rectangular and circular cross-sections is performed. 
Numerical and analytical procedures are applied to 
investigate the divergence and flutter instability 

conditions. It is found that when the system is rested on 
a foundation, the stiffness-hardening stability of the 
system enhances. It is demonstrated that when surface 
effects are considered, they induce a stabilizing effect on 
the system. The results showed that the asymmetric 
cross-section has an area of divergence instability 
compared to a symmetric cross-section. With a decrease 
in the inertia ratio, the instability area will increase. 

 
Fig. 4. Asymmetry cross-section and inertial ratio effect 
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