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ABSTRACT: In this study, the effect of microtextures parallel to the cutting edge on the rake face of 
cutting tools during the turning process of 17-4PH steel was investigated. The depth, width, and distance 
of micro-textures were studied. Turning tests were performed with the created tools and the cutting force 
was measured by a dynamometer. The results showed that by increasing the width of microgrooves, the 
cutting force first decreases and then increases. This trend shows that the width of the microgrooves 
has an optimal value in which the cutting force during the turning process is minimal. Also, the cutting 
force is reduced by increasing the depth of microgrooves. By increasing the distance of microgrooves, 
it was found that the cutting force has increased. Based on the optimization results, the optimal values 
of the parameters of width, depth, and distance of the microgrooves are 126 µm, 15 µm, and 200 µm, 
respectively. The calculated error percentage for optimization validation was 5.81%, which indicates 
the high accuracy of the optimization process in the Design-Expert software. The deflection of the 
workpiece was achieved with a tool with an optimal microgroove of 30 µm and with a plane tool equal 
to 62 µm, which shows a 51.6% reduction with a textured tool. In fact, the accuracy of the machined part 
was improved with microtextured tools.
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1- Introduction
Today, in the industry, the need to increase the life 

of mechanical parts by controlling friction and wear has 
increased. In the last decade, the functional conditions of the 
mechanical parts in contact with each other have become more 
severe, as a result, the maximum thickness of the lubricant 
between the involved parts has reached the level of their 
surface roughness [1]. Therefore, researchers are interested 
in improving their functional conditions by changing the 
microtopography of surfaces. Surface texturing is one of the 
possible solutions to improve the tribological characteristics 
of mechanical parts. The texture of the surfaces acts as 
lubricants accumulation zones and improves the tribological 
properties of the surfaces [2, 3].

The wear performance of tungsten carbide tools on which 
parallel, circular and hybrid microtextures were created was 
investigated by Sahu et al [4]. The results showed that the 
wear of the tool with parallel texture is reduced by 32% 
compared to plain tools.

Machining of Inconel 718 with the textured tool by Gupta 
et al showed reduced tool wear, improved workpiece surface 
finish, and reduced cutting temperature compared to the 
untextured tool. The results showed that the textured tool can 
be used in the industry as an optimal tool [5].

The review of previous research shows that in most of 
them, the performance of the different texture shapes has 
been compared with each other and with the plain tool. Very 
few works have optimized the dimensions of the microtexture 
parameters, therefore, in this article, the optimal dimensions 
of the linear microtexture were obtained to lead to the 
minimum cutting force and increase the machining accuracy.

2- Methodology 
The turning tests were performed on a stainless steel 

17-4PH round bar. When turning this alloy, it is necessary 
to reduce the cutting forces in order to reduce the elastic 
deformation and, as a result, to increase the accuracy of 
machining. The experimental investigation was carried out 
on a TB50NR Lathe. Cemented tungsten carbide inserts were 
used in experiments. In addition, cutting forces were measured 
using Kistler 9121 dynamometer. The microgrooves were 
made using a fiber laser at the rake face of the tools. The 
wavelength, repetition rate, and scanning speed were 1064 
nm, 600 kHz, and 100 mm/s, respectively.

Machining parameters including cutting speed, feed rate, 
and depth of cut are considered constant in this study and 
are selected from the catalog of the tool manufacturer. The 
cutting depth was 1 mm, the feed rate was 0.2 mm/rev, and 
the cutting speed was 145 m/min. The texture parameters of 
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the cutting tool include width w, pitch p, and depth d. Table 
1 shows the parameters of the experimental tests and their 
levels.

The images of the rake face and the cross-sectional 
profile of the textured tools are presented in Fig. 1. In this 
figure, p, w, and d indicate the pitch, width, and depth of the 
microgrooves, respectively.

3- Results and Discussion
The effect of the pitch of the microgrooves on the cutting 

force for different depths and widths of the microgrooves is 
shown in Fig. 2. According to these graphs, it is clear that the 
cutting force decreases with the decrease in the pitch of the 
microgrooves. The reduction of cutting force is attributed to 
the reduction of the effective tool and chip contact length.

The effect of the width of the microgrooves on the cutting 
force for different depths and pitches of the microgroove is 
shown in Fig. 3. According to this chart, it is clear that by 
increasing the width of the microgrooves, the cutting force 
first decreases and then increases. This can be explained by 

the way that the length of contact between the tool and the 
chip decreases by increasing the width of the microgrooves, 
which leads to a decrease in the cutting force. Contrary to 
this, when the width of the microgrooves is very large, the 
chip bends towards the inside of the microgroove, which 
finally leads to an increase in the contact length; Therefore, 
the cutting force increases. As a result, the width of the 
microgrooves has an optimal value in which the minimum 
cutting force is produced.

The effect of the depth of the microgrooves on the cutting 
force is presented in Fig. 4. From this graph, it is clear that 
the cutting force decreases with the increase in the depth of 
microgrooves. The debris is trapped inside the microgrooves, 
and in this way texturing the surface can prevent adhesive 
wear. The ability to trap particles resulting from abrasion 
increases with increasing the depth of microgrooves. In fact, 
when the chip passes through the rake face, shallow grooves 
are quickly filled with debris and lose their effectiveness in 
reducing force.

Fig. 1. Optical image of the developed textured tool and cross-section of microtexture

Table 1. Experimental tests parameters and their levels
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