
Amirkabir Journal of Mechanical Engineering

Amirkabir J. Mech. Eng., 54(11) (2023) 517-520
DOI: 10.22060/mej.2023.21626.7480

Numerical Study of Microbubble Dynamics Subjected to Ultrasound and Its Effect on 
Thermal Ablation of Biological Tissue 
G. Heidarinejad1 , A. Mojra2, H. Azizi Sormoli1

1 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
2 Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran

ABSTRACT: High-intensity focused ultrasound is a non-invasive method and provides many 
therapeutic applications for physicians. One of the ways to increase the efficiency of High-intensity 
focused ultrasound is using a Levovist contrast agent, which consists of microbubbles. In the present 
study, we calculate the pressure field due to the High-intensity focused ultrasound using the Helmholtz 
equation for linear ultrasonic wave propagation. Using the Keller-Miksis equation, we calculate the 
thermal effects caused by microbubble injection after determining the acoustic pressure. The Pennes 
bioheat transfer equation is used for studying the tissue temperature distribution. The simulation results 
show that in the presence of a microbubble under the influence of a High-intensity focused ultrasound 
pressure field, increasing the applied frequency and power increases the value of heat sources caused 
by the microbubble oscillation. An increase in the temperature of biological tissue can be observed after 
the injection of microbubbles. Within the pressure range of 2.54 MPa, the tissue temperature at the 
focal point, for the case where the microbubble with the initial radius of 50 μm is injected, increases by 
8.28 C . Meanwhile, if a microbubble with an initial radius of 50 micrometers is injected, there is a 
further increase in the tissue temperature by 57.72%. In the absence of microbubbles, the corresponding 
temperature rise is only 5.42 C  for the same operating conditions. Finally, the Arrhenius model shows 
that the microbubbles with different initial radii increase the ablated tissue volume by about 38%.
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1- Introduction

High-Intensity Focused Ultrasound (HIFU) plays a very 
important role in the development of engineering processes 
and medical treatment methods. Today, these waves are 
widely used in urinary and biliary tract stone breaking, 
medical imaging, oxidation reaction intensification, enzyme 
activity control, industrial cleaning, etc. [1].
In medicine, the concept of the ideal treatment of tumor 
cancers means the complete removal of the tumor without 
damaging the normal and healthy tissue structure around the 
tumor. HIFU treatment is a non-invasive surgical method with 
the privilege of reducing the recovery period after treatment 
and the patients can return to their normal life sooner.
One of the possible strategies to optimize the HIFU treatment 
is the use of ultrasound contrast agents for the thermal ablation 
of tumors. These materials increase the conversion rate of 
acoustic energy into heat during the HIFU treatment. The 
microbubbles have gained increasing popularity as potential 
agents for the treatment of solid tumors with the help of HIFU 
due to the special feature of changing their shape and radius 
size caused by the induced acoustic pressure [2].

In a study by Stewart et al. [3], 55 women who had uterine 
fibroid tumors were treated with HIFU with an acoustic 
intensity of 500 to 700 2W cm−⋅  and the thermal effect of 
HIFU on the tumor was investigated. The results of this study 
showed that tissue necrosis occurs beyond the tumor area. 
This study determined the importance of HIFU simulation in 
its prediction and controllability.
Aswin et al. [4] in 2019, using a 3D numerical model, 
investigated the effects of injecting microbubbles in the 
vicinity of the tumor by considering the interaction between 
the microbubble cloud and the non-linear HIFU field using 
Navier-Stokes compressible equations on a fixed grid. In this 
research, it was found that among the thermal mechanisms for 
microbubbles, the viscous dissipation caused by microbubble 
fluctuations has the main role in the temperature increase.
In the present study, the HIFU radiation to the tissue and the 
interaction of this field with the microbubble caused by the 
Levovist injection on the volume of tissue necrosis have been 
investigated. using the common range of power and frequency 
of the transducer in clinical and therapeutic applications, the 
effect of the injected microbubble size and the change of its 
radius on the generated heat have been studied. Finally, the 
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effect of microbubble contrast agent injection on the increase 
in temperature and the volume of ablated tissue caused by 
HIFU has been analyzed.

2- Governing Equations
In order to simulate the microbubble-enhanced HIFU, the 
Helmholtz Eq. (1), Keller-Miksis Eq. (2), Pennes bioheat (3), 
and Arrhenius model (4) have been used. The equations are 
as follows: [5-7]
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Where   is the density of the tissue, p is the 
acoustic driving pressure,   is the angular frequency of 
the acoustic source, sc  is the speed of sound in the 

tissue R  is the microbubble wall radius, R  is the 
microbubble wall velocity, R  is the microbubble wall 
acceleration, C  is the heat capacity, k  is the thermal 
conductivity, b  is the blood perfusion rate, T  is the 
tissue temperature, metQ  is the metabolic heat 
generation, and extQ  is the volumetric heat generation. 
Also, n  is the damage index, fA  is the pre-
exponential factor, aE  is the activation energy, uR  is 
the molar gas constant. 

3. Problem Definition and Numerical Solution 
Method 

In the present study, in order to solve the governing 
equations of the microbubble-enhanced HIFU ablation, 
a numerical approach based on the simulation using 
COMSOL Multiphysics and FORTRAN software 
packages have been used. In order to accurately solve 
the governing equations of HIFU propagation in the 
biological tissue, the acoustic wavelength criterion has 
been applied. Accordingly, after checking the mesh 
independence, 142593 triangular elements of the second 
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waves with microbubbles. Table 1 is related to the thermal 
ablation with microbubble injection with an initial radius of 
2 μm. According to this table, in the applied conditions of 
1, 2, and 3 MHz and 10 W, the thermal sources caused by 
viscosity and secondary acoustic radiation due to microbubble 
oscillations increase the volume of tissue necrosis in the tumor 
area by 96.17, 38.53 and 38.55%, respectively, compared to 
the absence of microbubble.
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