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ABSTRACT: The studies on the behavior of dielectric elastomers, as one of the electroactive polymers, 
often focus on their hyperelastic and dielectric properties. However, the expansion of the use of these 
materials as actuators depend on a better understanding of the factors affecting their behavior, including 
viscoelasticity, as well as the possibility of adding new features such as anisotropy. In this work, a 
nonlinear coupled model was presented to describe the behavior of anisotropic hyper viscoelastic 
materials with dielectric properties using the development of fundamental relations in continuum 
mechanics and the study of governing equations. First, the proposed model was evaluated by stepwise 
comparing the results of the presented model with the experimental results reported in the available 
literature. The acceptable agreement between the results indicates the model’s accuracy in describing 
the material’s behavior. Next, using the comprehensive form of the model, the effect of loading rate and 
electric field on the behavior of fiber-reinforced elastomers at various orientations has been studied. The 
results from applying the model to a sample problem show that increasing the angle of the fibers relative 
to the horizon reduces the stress range and increases the impact of the loading rate and electric field.
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1- Introduction
Initial models to describe the electromechanical behavior 

of dielectric elastomers introduced the Maxwell stress as a 
function of the permittivity of the material and the applied 
electric field. Electromechanical energy density was also 
used to describe the material’s behavior for strains greater 
than 20% [1]. While confirming the application of anisotropy 
as a method to increase the stability of the material, Yong 
et al. [2] showed that the actuation characteristics of a fiber-
reinforced dielectric elastomer depend on the orientation, 
layout, density, and type of fibers. Another study focused 
on the time-dependent behavior of dielectric elastomers and 
used time-dependent coefficients for strain energy function 
[3] 

This research presents a constitutive model to consider all 
the desired characteristics and provide the possibility to study 
their effect on the behavior of dielectric elastomers. The 
model is utilized to examine the behavior of a fiber-reinforced 
dielectric elastomer sample under different loading rates and 
electric fields and final results are reported.

2- Model Development and Calibration
Due to large deformations, dielectric elastomers actuated 

by electric voltages show nonlinear behavior. Therefore, 
to calculate the stress of these materials, the strain energy 

function is needed. The model should include terms to 
describe all the material’s features.

The Mooney-Rivlin model (function of the right Cauchy-
Green tensor’s invariants 1 2,I I ) [4] and Holzapfel model 
(function of anisotropy invariants 4 6,I I ) [5] are used to 
describe the hyperelastic behavior of the matrix, 

hyper
W

, and anisotropic effect of two fibers families, anisoW , 
respectively. Some other terms are used to describe the effect 
of incompressibility [6], volW , viscoelasticity [7], 

visco
W , and 

electroactivity [8], elecW .
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Pushing the second Piola-Kirchhoff tensor forward 
leads to the Cauchy stress tensor,  : 

1
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The proposed model for the second Piola-Kirchhoff 
tensor, as the nominal stress, is evaluated in predicting 
hyperelastic and anisotropic behavior, viscoelastic 
feature, and dielectric property using experimental test 
results reported in [7, 9, 10], respectively. Then, 
experimental results available in [9, 11-13] are used to 
extract the required constants of a silicon rubber matrix 
reinforced with two families of fibers using a curve 
fitting process. 

3. Results and Discussion 

Fig. 1 displays stress-stretch results of uniaxial tensile 
loading for different fiber orientations (0, ±15, ±30, and 
±45°) and different stretch rates (0, 10, and 20 (1/s)). 
According to the results, the effect of stretch rate on 
fibers parallel to the tension axis (0°) is negligible. As the 
fiber angle grows, stress ranges decrease, and the stretch 
rate effect becomes more significant. Furthermore, for 
fibers at ±30 and ±45°, it is possible to observe slope 
decline if the stretch is large enough.  

 

Fig. 1. Stretch rate effect for fibers at different 
orientations  

To explore the effects of the electric field, the stretch 
rate is assumed to be 1(1/s). Stretch-stress results are 
categorized into two groups with different electric field 
ranges. Based on Figs. 2 and 3, the reverse relationship 
between stress range and fiber angle is detectable for both 
groups. Moreover, as the electric field increase, the y-
intercept hits bigger amounts since electric stress 
contributes more to the final Cauchy stress. Despite the 
positive slope in all the results of group one, in group 
two, the slope initiates to decrease for big enough fiber 
angles (±30 and ±45°).  
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Fig. 2. Electric field effect for fibers at different 
orientations, group 1 

 

Fig. 3. Electric field effect for fibers at different 
orientations, group 2 

According to Figs. 1 to 3, as the fiber angles grow, 
stretch rate and electric field affect stress-stretch results 
more. When fibers are parallel to the stretch axis (at 0°), 
a significant portion of stress is carried by them. Since 
dielectric and time-dependent were not considered for 
fibers, it is not possible to observe the electric field and 
stretch rate effect when they are carrying the bigger 
portion of stress. As the fiber angles increase, the matrix, 
which is assumed to be a time-dependent dielectric 
elastomer, contributes more to transmitting the stress; 
consequently, the effects of the electric field and stretch 
rate rise. 

4. Conclusions 

In this study, a model is presented to describe the 
behavior of hyper-viscoelastic dielectric material 
reinforced with two fiber families. Comparing the 
analytical results obtained from different parts of the 
model with the available experimental results in the 
research literature for desired characteristics indicates the 
accuracy of the proposed model in describing the 
behavior of the material. On the other hand, the 
comprehensive form of the proposed model can predict 
Cauchy stress as a function of stretch. Obtained Cauchy 

stress for a uniaxial tensile test confirms the model’s 
ability to capture the effect of the electric field, 
anisotropy, and rate-dependency features. According to 
the findings, as the fiber angles grow, the stress ranges 
decrease. It also leads to less sensitivity to the effects of 
loading rate and electric field.   
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Fig. 3. Electric field effect for fibers at different orien-
tations, group 2
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in describing the behavior of the material. On the other hand, 
the comprehensive form of the proposed model can predict 
Cauchy stress as a function of stretch. Obtained Cauchy 
stress for a uniaxial tensile test confirms the model’s ability 
to capture the effect of the electric field, anisotropy, and rate-
dependency features. According to the findings, as the fiber 
angles grow, the stress ranges decrease. It also leads to less 
sensitivity to the effects of loading rate and electric field.  
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