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ABSTRACT: Dragonfly wings are a fascinating composite microstructure and highly specialized flight 
organs well adapted for dragonfly flight behavior. This paper aims to investigate the effect of graphene 
nanoparticles on the strength of a sandwich structure inspired by the microstructure configuration of a 
dragonfly wing under quasi-static loading. Sandwich vein structures are made of glass/epoxy layers with 
different percentages of graphene nanoparticles. Polyurethane foam was used in the central core of the 
vein. After the quasi-static test, the crashworthiness characteristics of these structures were discussed. 
On the other hand, the effect of polyurethane foam on the amount of damage to the sandwich structure 
due to quasi-static force was investigated. Pictures of the damaged surface and the cut view of the 
damage were taken to check the damage in the manufactured samples, and the results were reported. 
Finally, Field Emission Scanning Electron Microscopes analysis was used to evaluate the distribution of 
graphene nanoparticles in the samples. The results showed that the presence of graphene nanoparticles 
in the resin of this type of sandwich structure with a foam core if it is less than one value, will not have 
much effect on the strength of the structure. On the other hand, if the graphene nanoparticles exceed a 
certain amount, it shows relatively good resistance. 
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1- Introduction
Among the different types of insects, dragonflies have an 

excellent wing structure with high stability. They have attracted 
the attention of physicists and biology experts for a long-time 
regarding flight movement and mechanical performance. 
The dragonfly wing has a complex microstructure, mainly 
composed of a thin skin-like membrane and longitudinal 
veins [1]. The wing longitudinal vein has a sandwich 
structural model with two chitin shells and an intermediate 
protein layer, which was first reported by Wang et al. [2]. This 
issue can significantly help us design new structural materials 
with a high strength-to-weight ratio. Sandwich panels with 
a foam core are a group of solid composite materials with a 
low-density core, which are widely used in marine, military, 
aerospace, etc. they take. Composite and nano-composite 
sandwich structures with a foam core, under quasi-static 
loading, can show several damage modes, including fiber 
breakage, matrix cracking, matrix crushing, and delamination. 
Graphene Nanoparticles (GNs) have remarkable mechanical 
and physical properties and are potentially ideal materials for 
reinforcing polymers. 

In the present study, the effect of graphene nanoparticles 
on the strength of a new composite sandwich panel structure 
as a design inspired by the dragonfly wing microstructure, 
which consists of a polyurethane foam core, is investigated 

under quasi-static loading. The suggested structure with a 
wingtip comprises of E-glass/epoxy laminated unidirectional 
composite shells attached to a polyurethane foam core and 
filled with 0.1, 0.3, and 0.5% graphene nanoparticles mixed 
in epoxy resin, respectively. As a result of quasi-static 
loading, each sample’s force-displacement and total energy 
absorption diagrams were reported, and the comparison 
between the results in the force-displacement response and 
their crashworthiness characteristics, including crushing 
force efficiency and energy absorption ability, was also 
investigated.

2- Experimental Work
Composite layers were made of 300 g/cm3 unidirectional 

glass fibers, epoxy resin (EPR1080), and hardener (EPH 
1080). GP7 graphene nanoparticles with different weight 
percentages were added to the desired epoxy resin. To inject 
polyurethane foam by combining two substances, polyol, and 
isocyanate, with a specific weight percentage, polyurethane 
foam with a density of 50 kg/m3 was obtained. Single-
direction glass continuous raw fibers were placed inside the 
mold with an angular arrangement [0/90/0/90], and fiber 
compression was done using the Vacuum Injection Method 
(VIP). The built composite model is shown in Fig. 1. 
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3- Quasi-Static Test 
The sandwich panel sample was placed between two 

fixture plates and fixed with eight screws to create completely 
clamped boundary conditions in the sample. The loading 
speed was fixed at 2 mm/min for the quasi-static test in all 
four samples. The indenter geometric model used in this 
experiment is a hemispherical impactor penetrating the 
sandwich veins.  

Eq. (1) is used to calculate crashworthiness characteristics 
[3, 4]. 
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