

Amirkabir Journal of Mechanical Engineering

Amirkabir J. Mech. Eng., 55(1) (2023) 15-18 DOI: 10.22060/mej.2023.21773.7508

Multi-objective Genetic Algorithm Optimization of Natural Gas Pressure Drop Station Heaters Using the Entropy Generation Minimization Method

S. R. Kazemi Mazandarani¹, M. Farzaneh-Gord^{2*}, M. M. Shahmardan³, A. Esfahanipour⁴

¹Mechanical Engineering Department, Kharazmi Campus, Shahrood University of Technology, Shahrood, Iran

² Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran

³ Department of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahrood, Iran ⁴ Department of Industrial Engineering & Management Systems, Amirkabir University of Technology, Tehran, Iran

ABSTRACT: In recent years, with the continuous growth of natural gas consumption in Iran, the number of pressure drop stations has increased significantly. In throttling valves of these stations, the temperature drop due to the Joule-Thomson effect causes the gas to hydrate, freeze the valves, and block the transmission path. Hence, about 14,000 indirect-fired water-bath heaters have a duty for preheating high-pressure gas before entering them. Unfortunately, the 30% average efficiency of indirectly fired water-bath heaters wastes nearly one billion cubic meters of processed natural gas every year, equivalent to a 400 MW power plant capacity. In this article, intending to optimize, indirect-fired water-bath heaters were modeled thermodynamically and thermo-economically, and three objective functions including thermal efficiency, entropy generation number, and wasted cost number are defined and the mathematical model was proposed in two scenarios. Then the model was solved based on the multiobjective genetic algorithm, using the entropy generation minimization method, and the Pareto optimal fronts of the scenarios were determined. The model implementation results with a deviation of less than $\pm 10\%$ compared to the results of a real sample indicate its acceptable performance. Based on the technoeconomic justified results, it is possible to improve the efficiency of indirectly fired water-bath heaters between 48 and 55% depending on the gas volume flow rate. The relations, curves, and dimensionless groups obtained, can be used as a reference for the optimal design of indirect-fired water-bath heaters.

1-Introduction

The IFWBHs, due to low thermal efficiency, annually waste a huge amount of processed natural gas in Iran. Although many researchers have investigated their optimization [1-3], three-objective optimization based on the Non-dominated Sorting Genetic Algorithm Technique (NSGA-II) using Entropy Generation Minimization (EGM) and Specific Exergy Costing Method (SPECO) methods have not been studied for IFWBHs so far.

2- Methodology

2-1-Thermodynamic & Thermo-economic modeling

First, using energy, exergy, and cost balance equations, the problem is modeled in the framework of assumptions and technical-economic considerations, and the efficiency, losses, and cost measurement indicators are determined according to Eqs. (1) to (3), respectively:

$$\eta_{heater} = \eta_{bur} \cdot \left(\frac{\dot{Q}_{NG}}{\dot{Q}_{bur}}\right) \tag{1}$$

$$N_s = \frac{\sum \dot{S}_{gen}}{\dot{S}_{gen,MIN}} \quad ; \quad N_s \ge 1 \tag{2}$$

$$N_c = \frac{C_{rel}}{C_{rel,MIN}} \quad ; \quad N_c \ge 1 \tag{3}$$

2-2-Mathematical modeling

Then, by selecting a set of 20 decision variables and simulating them to chromosome genes in the form of Eq. (4), three objective functions (5) to (7) are defined to calculate the chromosomes' fitnesses:

Chromosome IFWBH =
$$\begin{bmatrix} EA \ BC \ \dot{V}_{NG} \ \dot{V}_{fuel} \ T_{bur,in} \\ \dots \ T_{hc,in} \ P_{hc,in} \ P_{iv,out} \ \eta_{bur} \ L_{sh} \\ \dots \ ID_{fl,i} \ ID_{hc,i} \ L_{wt,fl} \ L_{wt,hc} \ \varepsilon/D|_{fl} \\ \dots \ \varepsilon/D|_{hc} \ N_{pass,fl} \ N_{pass,hc} \ N_{path,fl} \ N_{path,hc} \end{bmatrix}$$
(4)

*Corresponding author's email: m.farzanehgord@um.ac.ir

Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information, please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

Review History:

Received: Sep. 15, 2022 Revised: Mar. 09, 2023 Accepted: Mar. 10, 2023 Available Online: Mar. 14, 2023

Keywords:

Pressure drop station Heat exchanger Water-bath heater Thermal efficiency Entropy generation

Fig. 1. NSGA-II flowchart used to solve the mathematical model of the problem

$$\eta = f_1(chromosome\,IFWBH) \tag{5}$$

$$N_s = f_2(chromosome\,IFWBH) \tag{6}$$

$$N_c = f_3(chromosome\,IFWBH) \tag{7}$$

These functions together with a set of equal and unequal constraints including thermodynamic and thermo-economic constants, operating limits, and scope of changes, make it possible to reach the space of feasible solutions to the problem. Next, in order to discover chromosomes that are able to compromise between contradictory fitnesses, the NSGA-II technique is used according to the flowchart shown in Fig. 1 and the setting parameters of Table 1.

3- Results and Discussion

Using the geometric parameters of an indirect-fired waterbath heater (IFWBH) sample manufactured by Oil, Gas, and Industrial (OGI) Process Equipment Incorporated [4] and the thermodynamic and thermo-physical parameters of reference [5] as real initial guesses, It was prepared more suitable first generation chromosomes in order to improve the sequence of convergent solutions in random iterations. Thus, the model

Table 1. The setting parameters of the proposed NSGA-II

Parameters	Symbols	Values
population size	прор	50
Probability of crossover	pc	0.7
Probability of mutation	рт	0.4
Mutation strength	ms	0.02
maximum of iteration	maxiter	100

was solved by simultaneously using Engineering Equation Solver (EES) and MATLAB software with parameters setting.Finally, Pareto optimal fronts for each of the proposed scenarios, determination, and optimal structural and process solutions of the IFWBH were introduced in the form of dimensionless groups. Based on the results, improving the thermal efficiency of IFWBHs in proportion to the gas flow passing through the heating coil is technically and economically justified in the range between 48 and 55%, and the total annual cost (Fig. 2) and the burner thermal capacity (Fig. 3) are within the limit of (), a function of thermal efficiency and gas flow rate, and outside this range, they depend on only one of the two.

Fig. 2. Optimal Total Annual Cost of IFWBH

Fig. 3. Optimal Capacity of IFWBH Burner

4- Conclusions

The results show that for flow rates higher than 100,000 m³/hr, the thermal efficiency is almost constant, despite the increase in the total annual cost and the burner thermal capacity. Meanwhile, for flow rates of less than 10,000 m³/hr, for each one percent increase in thermal efficiency, about 10,000 \in will be saved in the total annual cost and about 250 kW in the burner thermal capacity of IFWBHs.

Nomenclature

Variables		Subscripts	
BC	Brine concentration, (%)	bur	Burner
С	Cost, (€)	ft	Fire tube
EA	Excess air, (%)	hc	Heat coil
ID	Inner diameter, (m)	in	Inlet
L	Length, (m)	MIN	Minimum
N	Number of pipes	NG	Natural gas
N_c	Wasted cost number	out	Outlet
N_s	Entropy generation number	pass	Tube pass
Р	Pressure, (kPa)	path	Tube path
Ż	Thermal power, (kW)	rel	Relative
\dot{S}_{gen}	Entropy generation, (kW/K)	sh	Shell
Т	Temperature, (°C)	tv	Throttling valve
\dot{V}	Volumetric flow rate, (m ³ /hr)	wt	Wall thickness
ε/D	Relative roughness		
η	Thermal efficiency		

References

- [1] S.R. Kazemi Mazandarani, M. Farzaneh-Gord, M.M. Shahmardan, Optimization of Geometric Dimensions of Fire Tube and Heat Coil Used in City Gate Stations Heaters, Modares Mechanical Engineering, 19(5) (2018) 1103-1114 (in Persian).
- [2] S.A. Mostafavi, M. Shirazi, Thermal modeling of indirect water heater in city gate station of natural gas to evaluate efficiency and fuel consumption, Energy, 212 (2020) 118390.
- [3] P. Soleimani, M. Khoshvaght Aliabadi, H. Rashidi, H. Bahmanpour, Enhancing the Thermal Efficiency of Gas Pressure Reduction Stations (CGS) Heaters Using the Twisted Tapes (Case study: Iran Golestan Qaleh-Jiq Station), Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 40(4) (2021) 1333-1145.
- [4] OGI, Oil, Gas, and Industrial Process Equipment Incorporated, in: TERI brand, Horizontal Natural Draft, https://www.ogipe.com/product-item/horizontal-naturaldraft/, 2019, pp. [Accessed April 19, 2019].
- [5] M. Stewart, Surface Production Operations: Vol 2: Design of Gas-Handling Systems and Facilities, Elsevier Science, 2014.

HOW TO CITE THIS ARTICLE

S. R. Kazemi Mazandarani, M. Farzaneh-Gord, M. M. Shahmardan, A. Esfahanipour, Multiobjective Genetic Algorithm Optimization of Natural Gas Pressure Drop Station Heaters Using the Entropy Generation Minimization Method, Amirkabir J. Mech Eng., 55(1) (2023) 15-18.

DOI: 10.22060/mej.2023.21773.7508

