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ABSTRACT: Parallel manipulators are of interest in various industries due to their high precision, 
rigidity, high speed and low inertia. Controlling these types of systems faces challenges due to their 
complex and non-linear dynamics. Among the many methods of controlling the path of parallel 
manipulators, computed torque and sliding mode methods are the famous methods that are proposed. 
In practical applications, when the speed of the robot increases, adjusting the controller parameters is 
very difficult and depends on the working conditions of the robot, so the robot cannot work properly 
with fixed and predetermined coefficients under any condition. The type of path, the speed of the robot 
along the path, the initial conditions of the end effector of the robot in relation to the path, and even the 
sampling time are factors that affect the accuracy of the controller, and by changing each of them, it 
may be necessary to redefine the parameters of the control system and change the control coefficients. 
In this article, a method is presented which is based on the sliding mode method and the coefficients of 
the control system are adjusted appropriately by changing the sliding surface and sliding speed using 
the fuzzy method. The performance of this method has been investigated in two ways: modeling in 
MATLAB software and real time applying it to a planar parallel robot. 
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1- Introduction
Parallel manipulators consist of several independent 

kinematic chains. All the mentioned chains are connected to 
the fixed base on one side and to the mobile base on the other 
side. Compared to serial manipulators, parallel dexterous 
arms have potential advantages in accuracy, robustness, and 
the ability to carry heavy loads [1]. Parallel manipulators are 
subject to uncertainties that may be caused by the unknown 
nonlinear dynamic model, nonlinear friction forces, unknown 
uncertainties, and external disturbances. These uncertainties 
weaken the performance of the control system. Therefore, 
precise trajectory control for parallel dexterous arms is a 
challenging task, especially at high speeds with various 
uncertainties [2].

Due to good robustness of sliding mode control against 
uncertainties, ability to overcome external disturbances and 
ease of implementation. This method has attracted a lot of 
attention among the control methods of nonlinear systems, 
especially for the control of parallel or serial manipulators 
[3]. However, this method has shortcomings, most of which 
are due to the use of fixed control gains in the switching part 
as well as the slope of the sliding surface [4]. In this control 
method, increasing the gain of the controller increases the 
robustness of the system, but increasing the gain is limited 
because it aggravates the undesirable phenomenon of 

chattering as well as the saturation of actuators. On the other 
hand, reducing the controller gains reduces the performance 
and robustness of the controller and increases the tracking 
error. For this reason, the proper adjustment of sliding mode 
controller coefficients has been widely considered by the 
control community in recent years [5]. 

In this article, in order to trajectory control of a five-bar 
parallel plannar robot, a method based on the sliding mode is 
presented, whose gains are adjusted automatically and online 
by the fuzzy method. The results of the work have been 
evaluated by simulation in MATLAB software and also by 
practical implementation on a robot.

2- Modeling
Since the control methods considered in this article work 

based on the system model, first it is necessary to introduce 
the robot model and briefly mention its dynamic equations.

2- 1- Manipulator sepecifications
The image of the parallel robot analyzed in this article 

can be seen in Figure 1. The length of the arms, the absolute 
rotation of the joints and the distance of each joint to the 
center of mass of the arm are represented by li, qi, and lgi 
respectively. The mass of the arms is expressed by mi and 
the mass moment of inertia relative to the center of mass 
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of the arm are expressed by Ji. The robot has two motors 
whose torques are expressed as T2 and T5 respectively. The 
specifications of the robot are given in Table 1.

2- 2- Dynamic equations
The dynamic equations of the robot are obtained using 

Lagrange’s equations in the form of the equation (1).
The angular position and angular velocity of the robot 

arms are defined as state variables in the form of equation 
(2). fi, hi and gi (i=2, 3, 4, 5) are non-linear functions of the 
state vector obtained from the robot dynamics.
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Fig. 1. Coordinate system and parametrs used in 
equations. 

Table 1. Specifications of the robot 
 

0.495 kg m3 310 mm l1 
0.449 kg m4 250 mm l2 

11.710-3 kg.m2 Jo2 250 mm l3 

4.4910-3 kg.m2 J3 250 mm l4 

5.5110-3 kg.m2 J4 250 mm l5 

12.010-3 kg.m2 Jo5 134 mm lg3 

  126 mm lg4 
400 W AC Servo Motor (ECMA-C20604RS) Actuators 
Delta Standard AC Servo Drive (ASDA-B2 

Series) Driver 
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3. Control 

Using the coputed torque control method, the control 
law for trajectory control of this robot can be expressed 
by equation (3). 
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Where ni is expressed as equation (4). 
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Using the sliding model control method, the torque 
of the motors can be calculated as equation (5). 
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In equation (5), ki represents the weight of the two 
parts of the controller, and the value of i is used to 
eliminate chattering and allows the system to be located 
around the plane s=0 as much as the boundary condition 
i, if necessary. i, ki, and i are constants that are 
determined based on the expected performance of the 
system. 
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In equation (5), ki represents the weight of the two 
parts of the controller, and the value of i is used to 
eliminate chattering and allows the system to be located 
around the plane s=0 as much as the boundary condition 
i, if necessary. i, ki, and i are constants that are 
determined based on the expected performance of the 
system. 

 (3)

Where ni is expressed as equation (4).

 

In this article, in order to trajectory control of a five-
bar parallel plannar robot, a method based on the sliding 
mode is presented, whose gains are adjusted 
automatically and online by the fuzzy method. The 
results of the work have been evaluated by simulation in 
MATLAB software and also by practical 
implementation on a robot. 

2. Modeling 

Since the control methods considered in this article 
work based on the system model, first it is necessary to 
introduce the robot model and briefly mention its 
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2-1 Manipulator sepecifications 

The image of the parallel robot analyzed in this article 
can be seen in Figure 1. The length of the arms, the 
absolute rotation of the joints and the distance of each 
joint to the center of mass of the arm are represented by 
li, i, and lgi respectively. The mass of the arms is 
expressed by mi and the mass moment of inertia relative 
to the center of mass of the arm are expressed by Ji. The 
robot has two motors whose torques are expressed as T2 
and T5 respectively. The specifications of the robot are 
given in Table 1. 
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2-2 Dynamic equations 

The dynamic equations of the robot are obtained using 
Lagrange's equations in the form of the equation (1). 

The angular position and angular velocity of the 
robot arms are defined as state variables in the form of 
equation (2). fi, hi and gi (i=2, 3, 4, 5) are non-linear 
functions of the state vector obtained from the robot 
dynamics. 
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3. Control 

Using the coputed torque control method, the control 
law for trajectory control of this robot can be expressed 
by equation (3). 
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Using the sliding model control method, the torque 
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In equation (5), ki represents the weight of the two 
parts of the controller, and the value of i is used to 
eliminate chattering and allows the system to be located 
around the plane s=0 as much as the boundary condition 
i, if necessary. i, ki, and i are constants that are 
determined based on the expected performance of the 
system. 
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3. Control 

Using the coputed torque control method, the control 
law for trajectory control of this robot can be expressed 
by equation (3). 
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Using the sliding model control method, the torque 
of the motors can be calculated as equation (5). 
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In equation (5), ki represents the weight of the two 
parts of the controller, and the value of i is used to 
eliminate chattering and allows the system to be located 
around the plane s=0 as much as the boundary condition 
i, if necessary. i, ki, and i are constants that are 
determined based on the expected performance of the 
system. 
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3. Control 

Using the coputed torque control method, the control 
law for trajectory control of this robot can be expressed 
by equation (3). 
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Using the sliding model control method, the torque 
of the motors can be calculated as equation (5). 
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In equation (5), ki represents the weight of the two 
parts of the controller, and the value of i is used to 
eliminate chattering and allows the system to be located 
around the plane s=0 as much as the boundary condition 
i, if necessary. i, ki, and i are constants that are 
determined based on the expected performance of the 
system. 
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automatically and online by the fuzzy method. The 
results of the work have been evaluated by simulation in 
MATLAB software and also by practical 
implementation on a robot. 

2. Modeling 

Since the control methods considered in this article 
work based on the system model, first it is necessary to 
introduce the robot model and briefly mention its 
dynamic equations. 

2-1 Manipulator sepecifications 

The image of the parallel robot analyzed in this article 
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to the center of mass of the arm are expressed by Ji. The 
robot has two motors whose torques are expressed as T2 
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2-2 Dynamic equations 

The dynamic equations of the robot are obtained using 
Lagrange's equations in the form of the equation (1). 

The angular position and angular velocity of the 
robot arms are defined as state variables in the form of 
equation (2). fi, hi and gi (i=2, 3, 4, 5) are non-linear 
functions of the state vector obtained from the robot 
dynamics. 
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3. Control 

Using the coputed torque control method, the control 
law for trajectory control of this robot can be expressed 
by equation (3). 
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Using the sliding model control method, the torque 
of the motors can be calculated as equation (5). 

(5) 
1

12 2 2

5 55 2

2

tanh

0

ˆ
ˆ

0

tanh

s
T T k
T kT s

  



             
  
 
   

                 




      


 

Where in 

(6) 

 
 

 
 

 
 

2

5 5

2

2 2 2

5 55

2 22

1

5 55

ˆ

0

ˆ

0
d d

dd

T h x g x
h x g xT

f x
f x

  
  

                 
                                          



 

 

In equation (5), ki represents the weight of the two 
parts of the controller, and the value of i is used to 
eliminate chattering and allows the system to be located 
around the plane s=0 as much as the boundary condition 
i, if necessary. i, ki, and i are constants that are 
determined based on the expected performance of the 
system. 
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3. Control 

Using the coputed torque control method, the control 
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In equation (5), ki represents the weight of the two 
parts of the controller, and the value of i is used to 
eliminate chattering and allows the system to be located 
around the plane s=0 as much as the boundary condition 
i, if necessary. i, ki, and i are constants that are 
determined based on the expected performance of the 
system. 
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automatically by the fuzzy method. This part of the signal 
depends on the distance of the system states from the sliding 
surface. 

In this method, all three variables , , fs s T  are normalized 
in the range [-1,1] and as large negative (NB), medium 
negative (NM), small negative (NS), zero (ZE), small 
positive (PS), medium positive (PM) and large positive (PB) 
are categorized. The graph of the membership function of all 
three variables will be the same as in Figure 2.

Fuzzy rules are also written in the form of Table 2.[6]

4- Discussion and Results
In this research, in order to trajectory control of the robot 

shown in Figure 3, three control methods “Calculated torque”, 
“Sliding mode” and “Fuzzy sliding mode” have been applied 
and the results have been compared. As can be seen in figures 
4 to 6, the performance of the fuzzy sliding model method 
is very suitable and the control parameters are automatically 
adjusted with the given fuzzy rules so that the response of the 
system is a desirable response. Therefore, manual adjustment 
of control gains is not necessary.
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