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ABSTRACT: In this research, a meshless numerical method has been developed to solve internal 
and axisymmetric flows. In this method, the least squares of the Taylor series are used for spatial 
discretization and explicit multi-step Runge-Kutta method is used for temporal discretization. Governing 
equations are based on two-dimensional and symmetric Euler equations. The second and forth order 
artificial dissipation are used to solve the flows. In order to model boundary condition, subsonic and 
supersonic inlet and outlet boundary conditions as well as the wall boundary have been used according 
to the problem. To validate the results of the code, the inviscid flow inside a two-dimensional nozzle 
and the supersonic flow inside the channel along with bump have been simulated and the results have 
been compared with valid data. The simulation of the steady flow inside a axi-symmetric convergent-
divergent supersonic nozzle with Mach 5 in outlet has been done to measure the accuracy of solving the 
numerical code at the hypersonic speed. The results show that the developed code can simulate steady 
internal and axi-symmetric flows with very good accuracy. The process of code convergence is also 
presented, which shows the appropriate convergence of the developed code. The analysis time for shock 
capturing in the axi-symmetric nozzle is about 64% faster than the Fluent software.
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1- Introduction
The numerical meshless methods recently are used to 

overcome some deficiency of mesh based numerical methods. 
In this methods only nodes are defined without any relation 
between nodes and nodes cloud are used for estimation of 
derivatives at each point. Easiness of node generation and 
improvement of node distribution are some advantages of 
meshless methods. At the present years some researchers are 
done on node generations for meshless solvers [1]. Liu and Gu 
[2] introduced flow solution technics in meshless methods. 
Batina [3] used constant weight function and Deshpande [4] 
used upwind methods to estimate functions based on least 
squares methods. Katz and Jameson [5], proposed multicloud 
method to increase convergence rate of meshless operators. 
Hashemabadi and Hadidoolabi used high order discretization 
to increase meshless methods accuracy [6-8]. Shahane [9] 
developed a high order meshless method for incompressible 
flow solution. Couturier [10] used a meshless method base 
on approximate diffusion for solving 2D and 3D flows. In 
the present research an efficient meshless method is used for 
solving the internal 2D and axisymmetric nozzle flow.

2- Numerical Methodology
Inviscid Euler equations in 2D and axisymmetric form are 

used for internal flow solution. The nodes cloud as shown 

in Figure 1 are used with first order Taylor series for spacial 
discretization. 

2nd and 4th order artificial dissipation are used for eliminate 
flow oscillation. An explicit multi-step Runge-Kutta method 
is used for time discretization.

Two standard models are used for meshless based 
flow solver validation. First model is the Mason [11] two-
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Fig. 2. Mason nozzle B1 geometry 

Figure 3 shows the comparison of present meshless 
solver results with Mason experimental data. The good 
agreement is shown in this figure. 

 
Fig. 3. Nondimension pressure distribution over nozzle 

B1 wall  

Second validation model is a 2D bumped channel. A 
supersonic 1.4 Mach number flow is solved in channel 
with a 4% bump on the lower surface. The Mach contour 
for this flow simulation is shown in Figure 4. A good 
estimation of shock waves and their reflection are 
obtained in the flow field. In Figure 5 the pressure 
distribution on the upper and lower surfaces of channel 
are compared with results of reference [12]. Good 
agreement between present results and that reference is 
seen. 
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dimensional converging-diverging nozzles B1. The model 
geometry is shown in Figure 2. 

Figure 3 shows the comparison of present meshless solver 
results with Mason experimental data. The good agreement is 
shown in this figure.

Second validation model is a 2D bumped channel. A 
supersonic 1.4 Mach number flow is solved in channel with 
a 4% bump on the lower surface. The Mach contour for this 
flow simulation is shown in Figure 4. A good estimation of 
shock waves and their reflection are obtained in the flow 
field. In Figure 5 the pressure distribution on the upper 
and lower surfaces of channel are compared with results of 
reference [12]. Good agreement between present results and 
that reference is seen.

3- Results and Discussion
Two problem are simulated with present meshless 

based solver. First problem is the shock capturing in a 2D 
converging-diverging nozzle. The nozzle area ratio is 

/ 4exit throatA A = . Inlet total pressure is 2bar and static 
pressure at outlet set as 1.21 bar. The node distribution is 
shown in Figure 6 and the pressure contours in figure7. Based 
on Figure 7 a normal shock is captured at position 11.4m that 
is with good agreement with analytical result with position 
1.66.

The second problem is flow in an axisymmetric nozzle. 
Nozzle inlet and throat areas are 0.1963 and 0.00875 
respectively. Inlet total pressure is 21.56 bar and outlet static 
pressure set as 0.98 bar. The Mach contour in the nozzle is 
shown in Figure 8. As seen the output Mach number is 5 that 
is compatible with theory result.
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Fig. 5. Pressure coefficient on the two-dimensional 

channel walls with 4% bump (M=1.4) 

Two problem are simulated with present meshless based 
solver. First problem is the shock capturing in a 2D 
converging-diverging nozzle. The nozzle area ratio is 

/ 4exit throatA A . Inlet total pressure is 2bar and static 
pressure at outlet set as 1.21 bar. The node distribution is 
shown in Figure 6 and the pressure contours in figure7. 
Based on Figure 7 a normal shock is captured at position 
11.4m that is with good agreement with analytical result 
with position 1.66. 

 Fig. 6. Schematic of geometry and points distribution 
for 2-D nozzle 

 
Fig. 7. Pressure contour in the 2-D nozzle 

    The second problem is flow in an axisymmetric 
nozzle. Nozzle inlet and throat areas are 0.1963 and 
0.00875 respectively. Inlet total pressure is 21.56 bar and 
outlet static pressure set as 0.98 bar. The Mach contour 
in the nozzle is shown in Figure 8. As seen the output 
Mach number is 5 that is compatible with theory result. 

 

Fig. 8. Mach contour in axisymmetric nozzle 

 Conclusions 

A numerical solver is developed based on meshless 
method. The solver is used for simulation of 2D and 
axisymmetric internal flows. The solver results are with 
good agreement with validated data.  
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4- Conclusions
A numerical solver is developed based on meshless 

method. The solver is used for simulation of 2D and 
axisymmetric internal flows. The solver results are with good 
agreement with validated data. 
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Fig. 5. Pressure coefficient on the two-dimensional 

channel walls with 4% bump (M=1.4) 

Two problem are simulated with present meshless based 
solver. First problem is the shock capturing in a 2D 
converging-diverging nozzle. The nozzle area ratio is 

/ 4exit throatA A . Inlet total pressure is 2bar and static 
pressure at outlet set as 1.21 bar. The node distribution is 
shown in Figure 6 and the pressure contours in figure7. 
Based on Figure 7 a normal shock is captured at position 
11.4m that is with good agreement with analytical result 
with position 1.66. 

 Fig. 6. Schematic of geometry and points distribution 
for 2-D nozzle 

 
Fig. 7. Pressure contour in the 2-D nozzle 

    The second problem is flow in an axisymmetric 
nozzle. Nozzle inlet and throat areas are 0.1963 and 
0.00875 respectively. Inlet total pressure is 21.56 bar and 
outlet static pressure set as 0.98 bar. The Mach contour 
in the nozzle is shown in Figure 8. As seen the output 
Mach number is 5 that is compatible with theory result. 

 

Fig. 8. Mach contour in axisymmetric nozzle 

 Conclusions 

A numerical solver is developed based on meshless 
method. The solver is used for simulation of 2D and 
axisymmetric internal flows. The solver results are with 
good agreement with validated data.  
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Fig. 8. Mach contour in axisymmetric nozzle
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