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ABSTRACT: Nowadays, the practical applications of shell elements such as beams having thin-wall 
cross-sections are increasing greatly in various fields of engineering including aerospace, nuclear, 
marine, and automotive industries. This is due to their ability to optimally use structural materials and 
simultaneously reduce the total weight of the structure. Fiber polymer composites also have different 
conspicuous properties such as high stiffness-to-weight and strength-to-weight ratios, corrosion 
resistance, and high strength. Therefore, laminated composite C-section beam elements simultaneously 
possess both the beneficial features of fiber-reinforced composite materials and thin-walled cross-
sections at the same time. Motivated by these facts, in this research, the flexural-torsional stability 
of multi-layer fibrous composite tapered beam-columns with channel-section subjected to axial and 
bending loads is investigated. For this purpose, the total potential energy governing the problem is 
extracted based on Vlasov’s model for small non-uniform torsion along with the classical laminated plate 
theory. Then, using Ritz’s methodology as an analytical solution technique, the endurable buckling load 
is calculated. Eventually, the effect of important parameters such as stacking sequences, fiber composite 
materials, boundary conditions, axial load eccentricity, and axial preloading on the linear buckling 
capacity of double-tapered multi-layer composite beam-column with channel-section under axial load 
and end moment is investigated.
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1- Introduction
Due to the importance of using thin-walled laminated 

fibrous composite structural components having constant 
and/or variable cross-sections in different engineering fields 
such as axles of vehicles, helicopter rotors, wind turbine 
blades, and especially aircraft wings, the static and dynamic 
analyses of thin-walled structural elements with various end 
conditions under different loading cases have been widely 
studied in recent decades [1-4]. Based on these facts, in the 
current study, the overall flexural-torsional buckling response 
of tapered composite C-shaped beam-column exposed to 
axial-transverse loadings is investigated using the Ritz’s 
method in the framework of the Classical Laminated Plate 
Theory (CLPT) and Vlasov’s model for non-uniform torsion.

2- The Variational Formulation
A schematic representation of a tapered laminated 

composite C-shaped beam-column with length L subjected 
to transverse and axial loadings is shown in Fig. 1. The 
orthogonal right-hand Cartesian coordinate system (x, y, z) is 
adopted, wherein x denotes the longitudinal axis and y and z 
are the first and second principal bending axes parallel to the 
flanges and web, respectively. The origin of these axes (O) is 
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Fig. 1: (a) Schematic representation of axially/transversely 

loaded thin-walled beam with varying C-shaped cross-
section, (b) Displacement fields and load eccentricity 
parameter, (c) The stress resultant parameters, (d) 

Laminate configurations. 

Based on the small displacements assumption and 
Vlasov’s thin-walled beam theory for non-uniform 
torsion, the displacement fields can be expressed as [5]: 
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where , ,U V W  stand for to the axial, lateral and vertical 
displacement components along the , ,x y z  direction, 
respectively, whereas , ,u v w  are the kinematic quantities 
defined at the reference surface, the term ( , )y z  refers 
to the warping function, and   is the twisting angle. In 
this research, the variational formulation governing the 
flexural-torsional buckling is extracted on the basis of the 
stationary state as what follows [4]: 

0 0l eU U W       (4) 
In this formulation,   denotes a variational operator. lU  
and 0U  represent the elastic strain energy and the strain 
energy due to the effects of the initial stresses, 
respectively. We denotes work done by externally applied 
loads. The expression of the first variation of total 
potential energy is obtained as 
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where ( )comEA denotes axial rigidity. ( )y comEI  and 

( )z comEI  represent the flexural rigidities of the y- and z-
axes, respectively. ( )comEI  and ( )comGJ are, 
respectively, warping and torsional rigidities of 
composite thin-walled beams with doubly symmetric I-
section, defined by [1]: 
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Fig. 1. (a) Schematic representation of axially/trans-
versely loaded thin-walled beam with varying C-shaped 
cross-section, (b) Displacement fields and load eccen-
tricity parameter, (c) The stress resultant parameters, 

(d) Laminate configurations.
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located at the centroid of the cross-section. The shear point 
C is known by its coordinates (yc) in the reference fixed in 
centroid O.

Based on the small displacements assumption and 
Vlasov’s thin-walled beam theory for non-uniform torsion, 
the displacement fields can be expressed as [5]:
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where ( )comEA denotes axial rigidity. ( )y comEI  and 

( )z comEI  represent the flexural rigidities of the y- and z-
axes, respectively. ( )comEI  and ( )comGJ are, 
respectively, warping and torsional rigidities of 
composite thin-walled beams with doubly symmetric I-
section, defined by [1]: 
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 (3)

where , ,U V W  stand for to the axial, lateral and vertical 
displacement components along the , ,x y z  direction, 
respectively, whereas , ,u v w  are the kinematic quantities 
defined at the reference surface, the term ( , )y zφ  refers to 
the warping function, and θ  is the twisting angle. In this 
research, the variational formulation governing the flexural-
torsional buckling is extracted on the basis of the stationary 
state as what follows [4]:
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composite thin-walled beams with doubly symmetric I-
section, defined by [1]: 
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In this formulation, δ  denotes a variational operator. 
lU  and 0U  represent the elastic strain energy and the strain 

energy due to the effects of the initial stresses, respectively. 
We denotes work done by externally applied loads. The 
expression of the first variation of total potential energy is 
obtained as
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axes, respectively. ( )comEI  and ( )comGJ are, 
respectively, warping and torsional rigidities of 
composite thin-walled beams with doubly symmetric I-
section, defined by [1]: 
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where ( )comEA denotes axial rigidity. ( )y comEI  and 
( )z comEI  represent the flexural rigidities of the y- and z-axes, 
respectively. ( )comEIφ

 and ( )comGJ are, respectively, warping 
and torsional rigidities of composite thin-walled beams with 
doubly symmetric I-section, defined by [1]:
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where ( )comEA denotes axial rigidity. ( )y comEI  and 

( )z comEI  represent the flexural rigidities of the y- and z-
axes, respectively. ( )comEI  and ( )comGJ are, 
respectively, warping and torsional rigidities of 
composite thin-walled beams with doubly symmetric I-
section, defined by [1]: 
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As mentioned earlier, in this study, the tolerable buckling 
loads are attained using the Ritz’ method. To this aim, the 
shape functions including the torsion angle θ , the lateral 
deflection v, and the vertical deformation w for two different 
types of beams are chosen in the following forms: 

Cantilevers with completely restrained warping at the 
fixed end [2]:
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Here, the terms ,  ,  j j ja b c represent the undetermined 
Ritz coefficients.  
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double-tapered C-shaped beam-column element exposed 
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for the fiber-reinforced composite layers (glass-epoxy) 
are as follows, Ex = 75 GPa, Ey = 5.5 GPa, Gxy = 2.3 GPa, 
and υxy = 0.34. 
Table 1. The sequences of lamination for the web and both 
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Considering a prespecified stacking sequence (Table 
1), the variation of the sustainable buckling moment of 
simply-supported as well as fixed-free C-shaped beam-
column with respect to the compressive axial preloading 
(P0) is depicted in Fig. 2.  

4. Conclusions 

Graphical results reveal that the fluctuation of the 
lateral stability strength with axial preloading is 

nonlinear for both simply-supported and cantilever 
channel-section beam-column elements. The extracted 
diagrams show that including the compressive axial force 
diminishes the buckling moment capacity for different 
axial load positions. The total deflection of the C-section 
member grows dramatically as the axial compression 
force approaches the critical load, resulting in a 
considerable drop in the buckling moment resistance of 
the selected member. Furthermore, all of the situations 
studied show that compressive axial force acting along 
the centroid provides the greatest resistance to lateral 
instability. 
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Here, the terms ,  ,  j j ja b c represent the undetermined Ritz 
coefficients. 

3- Results and Discussion 
To assess the effects of axial preloading on the buckling 

moment capacity of laminated composite double-tapered 
C-shaped beam-column element exposed to pure bending, 
a web and flanges tapered member with a span of L=2.4 m 
is considered. At the left end, the web of the selected beam 
is supposed to be 110 mm deep and both flanges are 70 
mm wide, respectively. In the presence of a double-tapered 
element, the tapering parameters for the web and flanges 
are also considered to be 0.4β = and 0.4α = , respectively. 
Additionally, it is assumed that the web and each flange 
respectively consist of nw=36 and nf=24 fiber-reinforced 
composite layers, and the thickness of each ply is considered to 
be 0.25 mm. Based on this assumption, the whole thicknesses 
of the web section and each flange are respectively tw=6 mm 
and tf=9 mm. The material features for the fiber-reinforced 
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composite layers (glass-epoxy) are as follows, Ex = 75 GPa, 
Ey = 5.5 GPa, Gxy = 2.3 GPa, and υxy = 0.34.

Considering a prespecified stacking sequence (Table 1), 
the variation of the sustainable buckling moment of simply-
supported as well as fixed-free C-shaped beam-column with 
respect to the compressive axial preloading (P0) is depicted 
in Fig. 2. 

4- Conclusions
Graphical results reveal that the fluctuation of the lateral 

stability strength with axial preloading is nonlinear for both 
simply-supported and cantilever channel-section beam-
column elements. The extracted diagrams show that including 
the compressive axial force diminishes the buckling moment 
capacity for different axial load positions. The total deflection 
of the C-section member grows dramatically as the axial 
compression force approaches the critical load, resulting in 
a considerable drop in the buckling moment resistance of the 
selected member. Furthermore, all of the situations studied 
show that compressive axial force acting along the centroid 
provides the greatest resistance to lateral instability.
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Table 1. The sequences of lamination for the web and 
both flanges of channel-section beam
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As mentioned earlier, in this study, the tolerable buckling 
loads are attained using the Ritz’ method. To this aim, the 
shape functions including the torsion angle  , the lateral 
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Ritz coefficients.  

3. Results and Discussion  
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force approaches the critical load, resulting in a 
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shape functions including the torsion angle  , the lateral 
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Fig. 2. Variations of buckling moment for laminated 
composite tapered C-shaped beam-column ( ) subjected 
to pure bending and compressive axial preloading for 
two different laminations (e: axial load eccentricity, d: 

the web height)
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