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ABSTRACT: One of the main goals in the field of lab-on-a-chip is the manipulation of microparticles 
and cells on microfluidic chips. Methods based on magnetic forces, with remote controllability over 
particle movement, are considered one of the most appealing techniques toward this goal. Recently, 
inspired by electronic circuits and to transport particles in a controlled fashion in a tri-axial magnetic 
field, magnetophoretic circuits based on TI-shaped magnetic thin films are introduced. However, to date, 
capacitors are not used in order to store transported particles in these circuits. Here, TI magnetophoretic 
capacitors are introduced and characterized. The capability of the capacitor for storing particles of 
different sizes at various rotating magnetic field frequencies is studied. Towards this goal, finite element 
methods are used to simulate the magnetic potential energy distribution created by the magnetic thin 
films. Also, the trajectory of the magnetic particles, considering the drag forces, based on semi-analytical 
analysis and statistical methods, is investigated. The simulation results are validated experimentally. At 
the operating frequency of 0.1 Hz loading efficiency of 98% was achieved. Adding this circuit element 
to the magnetophoretic circuits results in a complete chip, with important applications in lab-on-a-chip 
systems, single-cell biology, and drug screening.
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1- Introduction
Manipulation of microparticles is of interest in many 

fields, such as biomedical engineering and colloid science. 
Towards this goal, many methods have been proposed, 
among which the magnetophoretic circuits are considered a 
novel promising approach [1, 2]. In these circuits, a magnetic 
thin film is patterned on a chip, which then gets magnetized in 
an external magnetic field and precisely transports magnetic 
particles on it. These circuits are composed of different circuit 
elements, including conductors, capacitors, and transistors, 
and offer various particle manipulations such as particle 
transport, storage, and retrieval.

A recent version of magnetophoretic circuits is based on 
the TI design [3]. These chips operate in a triaxial magnetic 
field, with a vertical bias field, in which a repulsive force 
between the particles prevents them from forming clusters 
and clogging the chip. Although TI conductors, which 
transport the particles are already proposed, TI capacitors, 
where the particles can be stored, are not presented yet. In this 
work, for the first time, these capacitors are introduced and 
characterized. We use experimentally validated simulations to 
find the proper operating frequencies, the performance of the 
proposed capacitors, and the particle average velocities. With 
the proposed capacitors, fully operational magnetophoretic 
circuits can be designed to manipulate particles.

2- Theory and Simulations
A semi-analytical model is used to simulate the magnetic 

forces. In this method, each magnetic bar (i.e., the I bar and 
the head and body segments of the T pattern) is modeled as 
an oblate spheroid [4]. Then, the obtained magnetic potential 
is used to calculate magnetic potential energy using Equation 
(1). 
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(1) ( ) 2
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2 p p fU V H  = −  

where µ0, Vp, χp, χf, and H stand for the magnetic 
permeability of the particle, the volume of the particle, 
the magnetic susceptibility of the particle, the magnetic 
susceptibility of the surrounding fluid, and magnetic 
field intensity, respectively. Then, the magnetic force 
acting on this particle is calculated based on Equation 
(2). 

(2) F U= −  
The particle velocity is then calculated based on 

Stokes’s law for small particles in a fluidic 
environment, based on Equation (3). 

(3) 

6 f p

Fv
r

=  

where ηf and rp stand for the viscosity of the fluid and 
the particle radius, respectively. Calculating the velocity 
at each time point gives us the particle position at the 
next time point. 

In our simulations with COMSOL software, 
stationary analysis, and magnetic field physics were 
chosen. After defining the materials (permalloy with 
magnetic permeability of 100,000 for the magnetic thin 
films), a proper mesh to achieve a converged solution 
was chosen. Then, the boundary conditions (external 
magnetic field) were defined, before running the 
calculations. 

To fabricate the chips, NFR16D2 photoresist was 
deposited on silicon wafers and then exposed to UV 
light. After development, a 5nm thin film of titanium 
and a 100nm thin film of permalloy were deposited on 
the chips, using the metal evaporation technique. After a 
lift-off process, the chips became ready to be used in 
experiments.  

3. Results and Discussion 

A TI pattern was fabricated and used for manipulating 
the particles. The trajectories of particles were recorded 
experimentally and compared with the ones obtained in 
simulations. After validating the simulation results, the 
operation of the capacitor design shown in Figure 1 was 
evaluated. Our simulation results show that by applying 
a magnetic field along a magnetic bar or a disk, two 
magnetic poles with low energies form on both sides, 
one of which disappears by superimposing a vertical 
bias field. In a periodic TI magnetic pattern, a rotating 
in-plane magnetic field, at any angle creates a magnetic 
pole at the tip of the bars aligned toward the field 
direction (See Figure 1, where the blue and red regions 
represent the area with low and high energies, 
respectively). The successive poles form closely and 
hand over their follower magnetic particles along the 
magnetic track towards the magnetic disk (circular 
pattern in Figure 1). When the particle approaches the 
disk, it moves to the pole formed by the disk and then 
circulates it. By further rotating the magnetic field, the 
particle remains close to the disk. Hence, this geometry 
behaves as a capacitor, which stores the particles. In 
Figure 1, the position of the particle at each time point is 
depicted with dashed circles. The dotted line in Figure 
1h represents the particle trajectory. It shows that the 
particle has moved from the right tip of the T bar in 
Figure 1a to the upper right side of the circle in Figure 
1h.  

 (1)

where µ0, Vp, χp, χf, and H stand for the magnetic 
permeability of the particle, the volume of the particle, 
the magnetic susceptibility of the particle, the magnetic 
susceptibility of the surrounding fluid, and magnetic field 
intensity, respectively. Then, the magnetic force acting on this 
particle is calculated based on Equation (2).
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Fig. 1. Energy distribution simulation results for the 
proposed capacitor based on a magnetic disk. In each panel, 

the direction of the magnetic field is shown with a black 
arrow. 

The ratio of the diameter of the particle to the gap 
between the TI pattern and the disk is an important 
parameter for device operation. Based on our achieved 
results, for proper particle transport along the magnetic 
track and storage in the capacitor, this ratio cannot be 
smaller than 1.6.  

Another important parameter to be studied is the 
applied magnetic field frequency. At high frequencies, 
particles need to move faster to follow the poles, which 
results in higher drag forces. Based on our studies, at 
frequencies of 0.1Hz, the particles could move 
smoothly, and a capacitor loading efficiency of 98% is 
achieved. At this frequency, the capacitor loading rate is 
5.88 particles per minute. 

Since the conducting path is composed of the I bars, 
it may be more interesting to form the capacitors based 
on them. A three-dimensional (3D) schematic of this 
design is presented in Figure 2. In this design, as 
opposed to a magnetic disk, the I bars are placed in a 
circular arrangement. Our simulation results show that 
the particle moves on the internal perimeter of the 
capacitor pattern. The ratio of the particle diameter to 
the gap size for this design to operate properly needs to 
be greater than 2.6. 

 
Fig. 2. Schematic of the proposed capacitor based on I bars. 
H shows the applied magnetic field. The sphere represents 

a stored particle. 

In the proposed chips, the position of the particles is 
synched with the external magnetic field. Hence, the 
particle velocity is a function of the magnetic field 
frequency. The movement of the particles is analogous 
to the movement of electrons in electrical circuits, 
where electrical current is proportional to the externally 
applied electric voltage difference (Ohm’s law). 
Assuming the magnetic pattern periodicity and the 
magnetic field frequency to be 26 µm and 0.1 Hz, 
respectively, the average particle velocity on this chip is 
2.6 µm/s.  

4. Conclusion 

Magnetophoretic circuits with the ability to precisely 
transport microparticles offer many important 
capabilities to lab-on-a-chip systems. In this work, two 
magnetophoretic capacitors for the circuits based on the 
TI pattern were introduced for the first time. In the first 
design, a magnetic disk plays the capacitance role. By 
choosing a small disk, compact circuits can be designed. 
But since the particles move in the perimeter of the disk, 
a small perturbation may distract it from its position. In 
the second design, magnetic I bars in a circular 
arrangement form the capacitor. This capacitor stores 
the particles internally and can better protect them 
against possible perturbations. But this design occupies 
a larger area on the chip. At low frequencies, the 
particle transport is less affected by the drag forces and 
higher efficiencies can be achieved. Based on our 
simulations, at the operating frequency of 0.1 Hz, a 
particle loading efficiency of 98% resulted. The 
proposed capacitor can be used in designing fully 
operational magnetophoretic circuits, with crucial 
applications in single-cell biology and medicine.  
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Fig. 2. Schematic of the proposed capacitor based on I 
bars. H shows the applied magnetic field. The sphere 

represents a stored particle.

The particle velocity is then calculated based on Stokes’s 
law for small particles in a fluidic environment, based on 
Equation (3).
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is proportional to the externally applied electric voltage 
difference (Ohm’s law). Assuming the magnetic pattern 
periodicity and the magnetic field frequency to be 26 µm and 
0.1 Hz, respectively, the average particle velocity on this chip 
is 2.6 µm/s. 

4- Conclusion
Magnetophoretic circuits with the ability to precisely 

transport microparticles offer many important capabilities 
to lab-on-a-chip systems. In this work, two magnetophoretic 
capacitors for the circuits based on the TI pattern were 
introduced for the first time. In the first design, a magnetic 
disk plays the capacitance role. By choosing a small disk, 
compact circuits can be designed. But since the particles 
move in the perimeter of the disk, a small perturbation may 
distract it from its position. In the second design, magnetic 
I bars in a circular arrangement form the capacitor. This 
capacitor stores the particles internally and can better 
protect them against possible perturbations. But this design 
occupies a larger area on the chip. At low frequencies, the 
particle transport is less affected by the drag forces and higher 

efficiencies can be achieved. Based on our simulations, at the 
operating frequency of 0.1 Hz, a particle loading efficiency 
of 98% resulted. The proposed capacitor can be used in 
designing fully operational magnetophoretic circuits, with 
crucial applications in single-cell biology and medicine. 
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