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ABSTRACT: Carbon dioxide is the primary greenhouse gas and its capturing by the calcium looping 
process is considered as one of the most promising technologies to reduce the negative effects on climate 
change. Since the calcium looping process is carried out at temperature higher than 700oC, it is not 
always possible to perform experimental investigations of the reactions taking place in industrial scales 
at real conditions. Therefore, in this research, two kinetic models including random pore and fractal-like 
models were used for the modeling of carbonation and sulfation reactions. The results showed that due 
to the importance of the diffusion stage in the product layer, the difference between the experimental 
data and the ones predicted by the random pore model increased by passing time, and this difference was 
more increased under higher concentrations of sulfur dioxide. On the contrary, the fractal-like model 
with considering variable diffusion coefficients during the reaction time, presented a better accuracy. 
The fractal-like model was used to predict the carbonation and sulfation reactions conversions at cycles 
5, 15, and 30, showing 60, 37, and 27% carbonation conversion, and 1.6, 1.3, and 1.1% sulfation 
conversion, respectively. In addition, the conversions were decreased during the consecutive cycles due 
to the decrease of capture capacity and specific surface area of the adsorbent.
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1- Introduction
The calcium looping process, which is based on the 

reversible reaction of carbonation-calcination between 
calcium oxide and calcium carbonate, has been recognized 
as a second-generation technology for CO2 capture [1]. This 
process consists of two interconnected circulating fluidized 
bed reactors, namely a carbonator and a calciner. The 
carbonation reaction (Eq. (1)), which involves the conversion 
of calcium oxide to calcium carbonate at a temperature of 
650 oC inside the carbonator, and the calcination reaction (Eq. 
(1)), which involves the decomposition of calcium carbonate 
into calcium oxide and carbon dioxide at a temperature higher 
than 900 oC inside the calciner [2, 3].
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Due to the presence of corrosive SO2 gas in the 
process as well as operational and equipment 
limitations, it is not easy to investigate the calcium 
looping process experimentally. Therefore, kinetic 
modeling and studying the effective parameters can lead 
to a better understanding of this process. This study 
aims to model the calcium looping using two different 
kinetic models in the presence of SO2 gas. To validate 
the models used in this study, the results obtained from 
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2. Methodology 
In this study, two kinetic models, including the 

random pore model and the fractal-like model, were 
utilized for the modeling of the calcium looping 
process. The random pore model assumes that the pores 
of particles are a set of uniform cylindrical shapes with 
random orientations. This model has been successfully 
applied to gas-solid reactions, including the carbonation 
and sulfation of CaO, and is defined by Eq. (3) [7]:  
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where represents the internal structure parameter of 
the sorbent and   represents the modified Biot modulus 
and defined by the following equation [8]: 
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 In the random pore model, it is assumed that Dp 
does not change throughout the slow stage from the 
beginning to the end of the reaction. However, 
Balasamo et al. [9] have also shown that in 
heterogeneous processes, the diffusion rate is a function 
of time. In other words, in reactions such as carbonation 
or sulfation, Dp should be a function of time from the 
beginning to the end of the reaction. In the fractal-like 
model, this aspect is considered using a heterogeneity 
parameter called h, and the modified Dp equation is 
presented as Eq. (7): 
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3. Discussion and Results 

Figure 1 shows the results of the modeling for the 
carbonation and sulfation reactions in the first cycle, 
where the right graph represents modeling with the 
random pore model and the left graph represents 
modeling with the fractal-like model. Based on the 
experimental data for the carbonation reaction, the 
transition from the fast to the slow stage occurs 
approximately 20 minutes after the start of the reaction, 
which is accurately modeled by both the random pore 
and fractal-like models. As shown in the figure, the 
difference between the experimental data and the model 
increases towards the end of the reaction and over time, 
reaching 9.8% and 6% by the time 300 min for the 
carbonation and sulfation reactions, respectively. On the 
other hand, the fractal-like model accurately models the 
experimental data for the sulfation reaction, with a 
maximum error of 3% and 0.5% for the carbonation and 
sulfation reactions, respectively, at the end of the 
reaction. 

 

Fig. 1. Modeling of carbonation and sulfation at first 
cycle using (a) RPM (b) Fractal-like along with 

experimental data [6]  
 

As the number of carbonation-calcination cycles 
increases, the capacity of the sorbent for CO2 adsorption 
decreases. According to Figure 2, the carbonation 
conversion rate predicted by the fractal-like model was 
84% for Cycle 1 and 60%, 37%, and 27% for Cycles 5, 
15, and 30, respectively. The sulfation conversion rate 
was also 6.17% for Cycle 1 and 3.1%, 1.6%, and 1.1% 
for Cycles 5, 15, and 30, respectively. 

 

Fig. 2. Prediction of (a) carbonation and (b) sulfation 
reaction in cycles 5, 15 and 30 using the Fractal-like model 

along with experimental data in the first cycle [6] 

 

 

4. Conclusions 

   The random pore model and the fractal-like model 
were used to model the experimental data for 
carbonation and sulfation reactions, as well as to predict 
their conversion rates under different conditions. The 
results showed that the fractal-like model provides more 
accurate modeling and prediction of the conversion 
rates of the carbonation and sulfation reactions 
compared to the random pore model. 
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reactions in the first cycle and a concentration of 500 
ppm SO2 gas provided by Manovic et al. [6]. After 
selecting the best kinetic model, the prediction of the 
conversion of carbonation and sulfation reactions in 
higher cycles (5, 15, and 30) and different 
concentrations of SO2 gas, was investigated. 
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 In the random pore model, it is assumed that Dp 
does not change throughout the slow stage from the 
beginning to the end of the reaction. However, 
Balasamo et al. [9] have also shown that in 
heterogeneous processes, the diffusion rate is a function 
of time. In other words, in reactions such as carbonation 
or sulfation, Dp should be a function of time from the 
beginning to the end of the reaction. In the fractal-like 
model, this aspect is considered using a heterogeneity 
parameter called h, and the modified Dp equation is 
presented as Eq. (7): 
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3. Discussion and Results 

Figure 1 shows the results of the modeling for the 
carbonation and sulfation reactions in the first cycle, 
where the right graph represents modeling with the 
random pore model and the left graph represents 
modeling with the fractal-like model. Based on the 
experimental data for the carbonation reaction, the 
transition from the fast to the slow stage occurs 
approximately 20 minutes after the start of the reaction, 
which is accurately modeled by both the random pore 
and fractal-like models. As shown in the figure, the 
difference between the experimental data and the model 
increases towards the end of the reaction and over time, 
reaching 9.8% and 6% by the time 300 min for the 
carbonation and sulfation reactions, respectively. On the 
other hand, the fractal-like model accurately models the 
experimental data for the sulfation reaction, with a 
maximum error of 3% and 0.5% for the carbonation and 
sulfation reactions, respectively, at the end of the 
reaction. 

 

Fig. 1. Modeling of carbonation and sulfation at first 
cycle using (a) RPM (b) Fractal-like along with 

experimental data [6]  
 

As the number of carbonation-calcination cycles 
increases, the capacity of the sorbent for CO2 adsorption 
decreases. According to Figure 2, the carbonation 
conversion rate predicted by the fractal-like model was 
84% for Cycle 1 and 60%, 37%, and 27% for Cycles 5, 
15, and 30, respectively. The sulfation conversion rate 
was also 6.17% for Cycle 1 and 3.1%, 1.6%, and 1.1% 
for Cycles 5, 15, and 30, respectively. 

 

Fig. 2. Prediction of (a) carbonation and (b) sulfation 
reaction in cycles 5, 15 and 30 using the Fractal-like model 

along with experimental data in the first cycle [6] 

 

 

4. Conclusions 

   The random pore model and the fractal-like model 
were used to model the experimental data for 
carbonation and sulfation reactions, as well as to predict 
their conversion rates under different conditions. The 
results showed that the fractal-like model provides more 
accurate modeling and prediction of the conversion 
rates of the carbonation and sulfation reactions 
compared to the random pore model. 
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4- Conclusions
The random pore model and the fractal-like model were 

used to model the experimental data for carbonation and 
sulfation reactions, as well as to predict their conversion 
rates under different conditions. The results showed that 
the fractal-like model provides more accurate modeling and 
prediction of the conversion rates of the carbonation and 
sulfation reactions compared to the random pore model.
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