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ABSTRACT: The spherical shell is an ideal geometry for use in pressure vessels under uniform 
external pressure. The collapse pressure of these types of shells is much lower than its theoretical value 
due to the high sensitivity to imperfections and the yield stress of the material. Since the imperfections 
depend on the sheet metal forming method, it is necessary to investigate the effect of the fabrication 
method on the collapse pressure. This article is focused on the experimental and numerical study of the 
buckling of hemispherical shells made by the spinning forming method. The most important problem 
of this method is the lack of control over the thickness. In this method, the imperfections are axially 
symmetrical, which is one of the advantages of this method.  In this article, buckling analysis due to 
both diameter and thickness variations is done separately and simultaneously. It has been shown that 
thickness variations in rotational forming should be considered in the analysis of shell collapse. Also, by 
comparing the numerical and experimental results shown with the help of quadratic volume elements, 
thickness changes, and boundary conditions can be applied with higher reliability compared to the shell 
element.
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1- Introduction
Buckling is one of the most important failure factors in 

structures under compressive stress. For example, the most 
important failure mode of columns, sheets, and shells under 
compressive force is buckling[1]. The strength and stability 
of spherical pressure vessels have been studied since 1915 
[2] and many experimental, theoretical, and numerical 
researches have been conducted on the loading capacity of 
metallic and composite spherical vessels. In 1974, Huang and 
his colleague [3] presented an algorithm for the calculation 
of the inelastic buckling of a spherical shell under external 
pressure. In 1995, Blachat et al. [4] conducted a study on the 
buckling strength of incomplete hemispheres. In 2017, Zhang 
et al [5] conducted tests on 10 laboratory sample spheres to 
investigate the buckling behavior of the spheres as well as 
obtain the buckling load of the spheres and compared the 
results with analytical and numerical responses. In 2018, 
Luo et al.  [6] researched the nonlinear buckling strength of 
steel shells under pressure with geometric defects. In another 
research in 2018, Zhang et al. [7]conducted research on the 
linear and non-linear behavior of buckling and post-buckling 
of titanium spheres under external pressure, taking into 
account the effect of defects with analytical, numerical and 
laboratory methods.

Defects caused by manufacturing have a great effect 

on the buckling of spherical shells. Therefore, it is wrong 
to calculate the buckling of the spherical shell without 
mentioning the manufacturing method. In this study, the 
buckling of hemispherical shells produced by spinning has 
been studied numerically and experimentally.

2- Methodology
In this paper, the buckling of two hemispherical samples 

is studied both experimentally and numerically. The samples 
are manufactured by the spinning forming method. Non-
uniform Symmetrically thickness is a major imperfection in 
this method [8]. The mechanical properties and the detailed 
Geometry and thickness of samples are given in Table 1 and 
Table 2.

 In the experimental study, according to Figure 1, a 
v-shaped groove was created in a circular sheet. Then the 
hemisphere was placed in the groove and sealed with silicone 
glue. The collection was placed in a tank under hydrostatic 
pressure. The hydrostatic pressure of the tank increased 
slowly. Finally, the pressure suddenly dropped due to the 
collapse of the structure. The collapse pressure for the 
hemisphere with a thickness of 1.3 mm and 0.9 mm were 
obtained 38 bar and 26 bar respectively. The final shape of the 
hemisphere after collapsing is shown in Figure 2.

In the numerical study, the buckling pressure was 
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calculated by Ricks approach in Abaqus software. Firstly, the 
geometry imperfection was implemented based on the first 
mode shape of linear buckling. Secondary, the exact geometry 
imperfection and thickness was implemented in Ricks 
approach. Nonlinear effects originated of contact boundary 
condition, plasticity and nonlinear Geometry is considered 
in all studies. Finally, the radial defect was implemented 
precisely and the thickness was approximated in the Ricks 
approach. Therefore, radial based imperfection and thickness 
based imperfection were studied separately. All imperfections 
were treated as axisymmetric based on spinning forming 
approach. 

3- Discussion and Results 
In Table 3 and Table 4, the Abaqus results are compared 

with the test results. In Table 3, the buckling pressure of a 
hemisphere with defects determined based on the shape of the 
first mode of linear buckling is much lower than the test. In 
contrast, the FEM results for the exact and axial geometry are 
in good agreement with the test.

The effect of radius-based defects and thickness-based 
defects on the buckling of the hemispherical hull is shown in 
Table 4. It has been observed that the linear approximation of 
the thickness is sufficient in the modeling.

4- Conclusions
In this paper is shown that the buckling of the hemisphere 

hull is dependent on the manufacturing method. Also is 
shown the pressure buckling of structure with axisymmetric 
imperfection originating from the spinning method is different 
from the pressure buckling of hemisphere pressure hull with 
unperfected based on first mode linear buckling. Also, with 
precise geometry modeling in numerical analysis, accurate 
results can be obtained compared to the experiment.
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