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ABSTRACT: Using biogas, rather than pure hydrogen, in a solid oxide fuel cell (SOFC) can help 
the green energy production chain. This research investigates the influence of operating conditions on 
the performance of a biogas-fueled SOFC. In this regard, a 3D numerical model is developed using a 
finite volume approach and Fluent software. User Defined Functions are employed to introduce the 
steam reforming processes inside the SOFC. The second-order upwind scheme and SIMPLE algorithm 
are used for the discretization of governing equations and the pressure-velocity coupling. The results 
indicate that the power density first increases and then decreases by increasing the steam-to-fuel (S/C) 
ratio. Increasing the biogas methane content causes the performance of the SOFC to improve by 
enhancing the rates of reforming reactions. At a voltage of 0.5V and an operating temperature of 1073K, 
increasing the biogas methane percentage from 45% to 65%, causes the power to increase by 15%. 
Also, increasing the operating temperature enhances the SOFC performance by increasing the rates of 
reforming and electrochemical reactions and the electrolyte ionic conductivity. At a voltage of 0.5V, for 
a biogas methane percentage of 65%, increasing the operating temperature from 1073K to 1273K leads 
to a 132% growth of power. It is also found that the optimal S/C ratio decreases with temperature and 
increases with biogas methane content and lies within the range of 0.3-1.2.
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1- Introduction
SOFCs due to their operation at high temperatures, can 

utilize alternative hydrogen fuels, including methane, biogas, 
and other hydrocarbons [1]. The introduction of water vapor 
at the fuel cell inlet induces steam reforming reactions, 
mitigates the risk of carbon deposition, and enhances fuel 
flexibility [2]. Finding the optimal amount of water vapor 
to be added to the fuel in a SOFC fueled with biogas is a 
challenging task. Adding too little water to biogas can impede 
the formation of steam-reforming reactions or lead to carbon 
deposition. Conversely, adding too much water can result in 
a performance drop of fuel cells due to fuel deficiency [3]. 
Previous research activities in investigating the performance 
of biogas-fed solid oxide fuel cells with added water vapor 
have generally employed a thermodynamic approach [4], 
focusing on specific biogas [5], a limited range of steam-to-
fuel ratios [6], and a fixed operating temperature [7]. 

This study aims to provide a more comprehensive 
understanding of the steam reforming process in a biogas-fed 
solid oxide fuel cell to cover the mentioned gaps. For this 
purpose, a three-dimensional numerical model is developed, 
and the influence of biogas composition, steam-to-fuel ratio, 
and operating temperature on the behavior of a biogas-fed 
solid oxide fuel cell is investigated.

2- Mathematical model
In order to simulate a SOFC, it is necessary to solve a 

set of partial differential equations that describe the transport 
phenomena within the fuel cell. These equations include the 
mass conservation equation, momentum equation, energy 
equation, species transport equation, and phase potential 
equation.

The direct utilization of biogas fuel containing CH4 and 
CO2 in a SOFC necessitates the occurrence of reforming 
reactions within the anode electrode. The primary reforming 
reactions include the steam reforming and water-gas shift 
reaction, shown in equations (1) and (2), respectively [8]:
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     The influences of steam reforming reactions on the 
species transport and energy equations are considered 
by using User Defined Functions (UDFs) in ANSYS 
FLUENT software.    

3. Result and Discussion 

This research investigates the influence of operating 
conditions on the performance of an SOFC. To this end, 
two types of biogases with different methane fractions 
(at 45% and 65% molar ratios), three different operating 
temperatures (873, 1073, and 1273 K), and a wide range 
of S/C ratios (from 0.2 to 2) are examined. 

Figure 1 illustrates the power density of the SOFC 
under various operational conditions. In this figure, Fuel 
1 and 2 have the methane-to-carbon dioxide ratios of 
0.82 and 1.85, respectively. It is observed that the power 
density initially increases and then decreases with the 
increase of S/C ratio. Also, as a result of the increase in 
temperature (regardless of fuel type and S/C ratio), the 
fuel cell performance improves due to a noticeable 
enhancement in reforming reaction rates. Furthermore, 
the optimal S/C ratio, leading to a maximum power 
output, decreases with the increase of temperature. 
Figure 1 also indicates that the methane-rich fuel (i.e., 
Fuel 1) leads to higher power densities and higher 
optimal S/C ratios, as compared to Fuel 2.  Figure 1 
shows that the risk of carbon deposition is higher at 
lower temperatures and for fuels with higher methane 
contents. 

The influence of each fuel type and operating 
temperature on both polarization and power curves are 
depicted in Figure 2. It is observed in Figure 2a that the 
power output of Fuel 2 (with a higher methane content) 
is considerably higher than that of Fuel 1 (with a lower 
methane content), and the difference is more 
pronounced at lower voltages. Also, for both fuels, the 
maximum power occurs at the operating voltage of 
0.5V. Figure 2b indicates that a higher operating 
temperature of 1273K results in a higher power output, 
and the difference between the two operating 
temperatures is more pronounced at lower operating 
voltages.  
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The influences of steam reforming reactions on the species 
transport and energy equations are considered by using User 
Defined Functions (UDFs) in ANSYS FLUENT software.  
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Fig. 2. Comparison of power density and polarization 
curves (a) effect of fuel type (b) effect of temperature 

4. Conclusion 

This study was concerned with the numerical study of a 
biogas-fueled solid oxide fuel cell under different 
operating conditions. In general, with an increase in 
operating temperature and fuel methane content, the 
rates of reforming reactions significantly increased, 
leading to more rapid consumption of methane, and 
increased hydrogen production and power density.  

The optimal S/C ratio has decreased with an increase 
in the operating temperature. For instance, at 873 K, the 
optimal S/C ratios for different biogas compositions 
were in the range of 1-1.2, while at 1273 K, they were 
within the range of 0.3-0.4. The optimal S/C ratio 
increased with the biogas methane content. For 
example, at an operating temperature of 1073 K, the 
optimal S/C ratios were 0.9 and 1 for biogas with 
methane molar fractions of 45% and 65%, respectively. 
Furthermore, the results indicated that the risk of carbon 
deposition was higher at lower temperatures and for 
fuels with higher methane contents. 
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Fig. 2. Comparison of power density and polarization 
curves (a) effect of fuel type (b) effect of temperature 

4. Conclusion 

This study was concerned with the numerical study of a 
biogas-fueled solid oxide fuel cell under different 
operating conditions. In general, with an increase in 
operating temperature and fuel methane content, the 
rates of reforming reactions significantly increased, 
leading to more rapid consumption of methane, and 
increased hydrogen production and power density.  

The optimal S/C ratio has decreased with an increase 
in the operating temperature. For instance, at 873 K, the 
optimal S/C ratios for different biogas compositions 
were in the range of 1-1.2, while at 1273 K, they were 
within the range of 0.3-0.4. The optimal S/C ratio 
increased with the biogas methane content. For 
example, at an operating temperature of 1073 K, the 
optimal S/C ratios were 0.9 and 1 for biogas with 
methane molar fractions of 45% and 65%, respectively. 
Furthermore, the results indicated that the risk of carbon 
deposition was higher at lower temperatures and for 
fuels with higher methane contents. 
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4- Conclusion
This study was concerned with the numerical study of a 

biogas-fueled solid oxide fuel cell under different operating 
conditions. In general, with an increase in operating 
temperature and fuel methane content, the rates of reforming 
reactions significantly increased, leading to more rapid 
consumption of methane, and increased hydrogen production 
and power density. 

The optimal S/C ratio has decreased with an increase in 
the operating temperature. For instance, at 873 K, the optimal 
S/C ratios for different biogas compositions were in the range 
of 1-1.2, while at 1273 K, they were within the range of 0.3-
0.4. The optimal S/C ratio increased with the biogas methane 
content. For example, at an operating temperature of 1073 K, 
the optimal S/C ratios were 0.9 and 1 for biogas with methane 
molar fractions of 45% and 65%, respectively. Furthermore, 
the results indicated that the risk of carbon deposition was 
higher at lower temperatures and for fuels with higher 
methane contents.
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