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ABSTRACT: This research endeavors to construct a mechanism, blending text mining and natural 
language processing, to apply a deep learning dialogue and deep reasoning approach to “Puppet robot.” 
Historically, tent dolls have been an ancient method of interacting with audiences, being directly managed 
by an operator. With breakthroughs in artificial intelligence and deep learning, it is now possible to 
reduce the dependence of tent dolls on operators, thereby enabling them to communicate intelligently 
with audiences. The robot, by identifying the audience’s Persian speech, ascertains a fitting answer 
to their inquiries and broadcasts it in audible Persian. The dialogue mechanism, deeply ingrained in a 
deep learning algorithm, identifies the user’s question and proffers a range of possible answers from the 
robot’s dataset categories. Utilizing the highest probability, the category containing the user’s question is 
identified, and responses to those questions are selected at random. Additionally, the Robo Tent Dialogue 
mechanism comprises several uncomplicated conditional sections that can furnish suitable responses to 
repetitive or inappropriate questions. Through diverse training and by altering parameters in the robot’s 
deep learning model, using a 64-class dataset, results reveal that the application of technologically 
advanced, high-neuron layers outperforms multi-layers without detrimentally impacting the model’s 
final accuracy.
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1- Introduction
Lee et al. emphasized the importance of semantic analysis 

in English question classification [1]. Xiong et al. proposed 
DMN+, a model for question answering without fact labels 
[2]. Chang et al. discussed issues in voice-controlled robot 
development and introduced a new model [3]. A study [4] 
described a robot that can engage in natural conversations and 
was perceived as human-like. Another research [5] presented 
a superior multilingual ASR model supporting 53 languages. 
Lastly, [6] delved into the possibilities of BCI technology in 
the Metaverse, suggesting a brain-to-speech system using 
imaginary speech.

In the study, a human-robot dialogue interaction is designed 
using a fabric doll as shown in Figure1. The robot picks up 
human speech via its microphone and sends the audio to a 
computer through Bluetooth. This audio is converted into text 
by a conversational model which then determines the robot’s 
audible response. This system promotes fluent two-way 
communication, leveraging the latest in machine dialogue 
technology. The robot’s interaction is further enriched with 
features like servo motors for movement, a camera for the 
operator to view the user, and an ESP32 processor to manage 
these functions.

This article outlines various dialogue mechanism methods 
and then selects the most suitable method for tent placement 
based on the pros and cons of each. By adjusting parameters 
in the deep learning network model, like the number of layers, 
neural neurons, and activation functions, the most optimized 
model is developed and its results are showcased.

2- Methodology
This model has 64 different classes and can answer 64 

different questions. The model architecture consists of two 
compressed layers and a Dropout with the random deletion 
rate of the first Dense layer neurons of 0.4.

Experiments with labeled questions identified an 
overfitting problem, causing the model to require exact 
matches and struggle with minor variations. Increasing 
question quantity under labels allows the model to focus on 
key sentence terms, enhancing label identification. Shuffling 
words within sentences didn’t significantly boost learning. 
A method for question answering uses auxiliary text from 
which relevant questions and answers are derived, helping 
the model identify patterns between text and answers. Sajjad 
Ayoubi introduced a Persian-specific model, PersianQA, 
containing around 9,000 titles, each with 5 to 10 questions. 
A drawback is its 500-word text limit. For robot integration, 
shorter texts are stored in its memory. When queried, the 
robot seeks answers internally or, if needed, uses PersianQA.*Corresponding author’s email: shahbazi@eng.ui.ac.ir
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Table 1. Comparing evaluation criteria of random 
question and answer dialogue mechanism

 

network architecture with the low number of neurons, 
increasing layers do not necessarily increase accuracy. 
According to the results, the random Q&A network 
architecture, with the number of neurons 4096 and a 
dense training layer, reached 0.042 and 0.98. 

To improve this model, well-regarded evaluation 
metrics like Precision, Recall, and F1 -Measure are 
employed. Table 1 compares the evaluation of a random 
Q&A mechanism with other models from the literature. 
Analysis indicates that the unique feature of the random 
Q&A mechanism in Robo Tent is its support for Persian, 
unlike other models that focus on English. This specific 
focus on Persian enhances its capability to process and 
comprehend the language semantically. Table1. 
Comparing evaluation criteria of random question and 
answer dialogue mechanism 

Table 1. Comparing evaluation criteria of random question 
and answer dialogue mechanism 

Evaluation 
models/criteria 

Precision
% 

Recall
% 

F1-
measure

% 
Ref [7] 51.50 80.41 55.9 

Ref [8] no T5 
method 

62.62 72.50 70.75 

Ref [8] with T5 
method 

77.78 77.75 77.78 

Ref [1] 
MultinomialNB 

method 

78 
71 74 

Ref [1] 
BernoulliNB 

method 

73 
75 74 

Ref [21] 
Logistic 

regression 
method 

83 

82 82 

Ref [21] 
LinearSVC 

method 

80 
80 80 

Ref [21] The 
hybrid model 

method 

83 
83 83 

This article 85 90.65 87.73 
 

Experiments adjusted the question-answer 
mechanism for 64 classes in audio mode, aiming to 
reduce unanswered questions. The strategy allows the 
robot to respond even if uncertain, enhancing user 
interaction, as continuous answers, even if potentially 
erroneous, boost user engagement. Table 1 reveals 
significant results for the Dialogue and Random Q&A 
mechanism. The model excelled in Precision at 85%, 
confirming its accuracy, and in Recall at 90.65%, 
indicating its capacity to address a vast array of 
questions. The Robo Tent model scored 87.73% in the 

F1-Measure, representing a balance between Precision 
and Recall. The survey suggests the Robo Tent model's 
efficacy in providing accurate answers and covering 
numerous questions. The F1-Measure affirms its 
balanced performance. The model processes a sentence 
input, outputting a numerical value between 0 and 5, 
indicating the detected emotion. 

4. Conclusions 

In this article, the mechanism of dialogue 
mechanisms was designed and implemented for a tental 
robot. Among these mechanisms, the question diagnosis 
method was examined by random answers and the 
feelings of emotions. All questions and answers have 
been implemented in Farsi and the user can communicate 
with the Robo Tent. The error is 0.998 and the error is 
0.042. Therefore, by identifying the user's question, the 
class is selected by the deep learning model and the 
random response from the set of answers intended for that 
class is shown as an output. 
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3- Discussion and Results
The random Q&A approach was selected for the tent’s 

Q&A system, enhancing the robot’s conversational ability. 
The neural network uses Fully Connected and Dropout 
layers to prevent data overlap. The SGD algorithm, aimed 
at minimizing the cost function reflecting the difference 
between predicted and actual labels, is employed. The 
optimizer’s primary parameters include a learning rate of 
0.01, a factor of , and momentum of 0.9. The cost function, 
cross-entropy, targets categorization tasks. The objective 
is to minimize this function to better match predictions to 
actual labels. The network’s effectiveness was assessed 
through 10 tests over 100 training sessions across 64 to 78 
categories. Figure 2 showcases error rates and the effect of 
layer increases, respectively. Training sessions took between 
80 to 1200 milliseconds each.

According to this form, increasing the number of layers in 
the number of neurons above 128 has no effect on educational 
accuracy. This can be due to the small number of Q&A 
classes. Also, with the increase in the number of educational 
neurons, accuracy increases. In network architecture with the 
low number of neurons, increasing layers do not necessarily 
increase accuracy. According to the results, the random Q&A 
network architecture, with the number of neurons 4096 and a 
dense training layer, reached 0.042 and 0.98.

To improve this model, well-regarded evaluation metrics 
like Precision, Recall, and F1 -Measure are employed. Table 
1 compares the evaluation of a random Q&A mechanism with 
other models from the literature. Analysis indicates that the 
unique feature of the random Q&A mechanism in Robo Tent 
is its support for Persian, unlike other models that focus on 
English. This specific focus on Persian enhances its capability 
to process and comprehend the language semantically. Table1. 
Comparing evaluation criteria of random question and answer 
dialogue mechanism

Experiments adjusted the question-answer mechanism 
for 64 classes in audio mode, aiming to reduce unanswered 
questions. The strategy allows the robot to respond even if 
uncertain, enhancing user interaction, as continuous answers, 

even if potentially erroneous, boost user engagement. Table 
1 reveals significant results for the Dialogue and Random 
Q&A mechanism. The model excelled in Precision at 85%, 
confirming its accuracy, and in Recall at 90.65%, indicating 
its capacity to address a vast array of questions. The Robo 
Tent model scored 87.73% in the F1-Measure, representing 
a balance between Precision and Recall. The survey suggests 
the Robo Tent model’s efficacy in providing accurate answers 
and covering numerous questions. The F1-Measure affirms its 
balanced performance. The model processes a sentence input, 
outputting a numerical value between 0 and 5, indicating the 
detected emotion.2 
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4- Conclusions
In this article, the mechanism of dialogue mechanisms 

was designed and implemented for a tental robot. Among 
these mechanisms, the question diagnosis method was 
examined by random answers and the feelings of emotions. 
All questions and answers have been implemented in Farsi 
and the user can communicate with the Robo Tent. The error 
is 0.998 and the error is 0.042. Therefore, by identifying the 
user’s question, the class is selected by the deep learning 
model and the random response from the set of answers 
intended for that class is shown as an output.
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