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Singularity, dynamics, and kinetics analysis of a 
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ABSTRACT: This paper examines a parallel robot with 5 degrees of freedom with a linear platform. 
Parallel robots have a restricted workspace, and singularities make the workspace even more confined. 
So the behavior of the robot in the workplace is examined by focusing on kinematics and dynamics. 
To do kinematic analysis, the constraint equations are developed using the geometric relations, and 
the speed and acceleration equations of the robot are derived. The Jacobian matrix is then calculated 
using the screw theory, and the state of the singularities in the workspace is determined based on the 
Jacobian matrix. Considering the singularity and physical and geometric limitations, an algorithm for 
calculating the workspace is presented. In addition, the kinematic index of dexterity is investigated using 
the Jacobian matrix as a measure of the robot’s closeness to the singular configurations. The results of 
solving kinematic and dynamic problems are validated with the output of the simulation in MATLAB 
software.
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1- Introduction
During recent decades, the machine tool industry has 

discovered the potential benefits of parallel mechanisms and 
many parallel mechanisms with 5 and 6 degrees of freedom 
structures have been developed [1]. Parallel robots have 
significant advantages in machining applications, especially 
the machining of complex surfaces, due to the ratio of their 
weight to the load capacity they bear, as well as their suitable 
orientations in space. 

The current research robot is a 5-degrees-of-freedom 
parallel robot with 4SPRR-SPR configuration. In [2] Garrett 
et al analyzed the inverse kinematics of this structure. 
In [3], considering a robot with this structure, Boras et al. 
investigated the changes in the connection point of the robot’s 
legs to the ground from the point of view of singularities. 
In [4], in addition to kinematic analysis, Guo et al analyzed 
the stiffness of this structure by applying the screw theory. 
Reference [5] is in the limited category of research that has 
dealt with the dynamic analysis of this structure, in which the 
dynamics of the robot has been extracted by the method of 
Kane’s equations.

Screw theory, inspired by Newton-Euler relations, 
analyzes the dynamics of multibody systems in a matrix form, 
in addition to having the advantages of Lagrange equation 
and Newton-Euler method and high calculation speed, it 

is efficient for multibody systems with a high number of 
members.

 In this article, the inverse kinematics calculations of 
the robot are first performed, then the Jacobian matrix is 
extracted using the screw theory. All singular orientations of 
the robot are obtained at every point of the working space. 
The kinematic index of dexterity is presented as a measure 
of the proximity of the robot to its singular points in the 
workspace. The dynamics of the robot are analyzed using the 
screw theory. Finally, all the obtained results are validated by 
simulating in MATLAB’s sim-mechanics environment.

2- Modeling 
The five-degree-of-freedom robot of the current research 

has a 4SPRR-SPR structure, Figure 1 shows how to connect 
the legs of the robot to the end effector and the fixed base. 

The screw axes of the robot joints are shown in Figure 3. 
In equation (1), the Jacobian matrix of the robot is written, 
which is obtained based on the screw theory
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Fig. 2. Schematic of the end effector 

 
The screw axes of the robot joints are shown in Figure 
3. In equation (1), the Jacobian matrix of the robot is 
written, which is obtained based on the screw theory 

 
Fig. 3. Joint screw in the robot 
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In screw theory, the dynamic relationships of each 
member are written separately, and by assembling all 
the equations, matrix relationships are obtained to 
extract the forces of operators and reaction forces. 
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(3) 

SMt WMt w = + −  (4) 
where the matrix K with dimensions 6n × 6(n − 1) 
contains the constraint coefficients of all kinematic 
pairs, which is called the robot constraint matrix. t is a 
6(n − 1) vector that includes the twist of all links of 
the robot. 𝜆𝜆 is the wrench vector of constraint torques 
and forces, also AcT called the actuator wrench 
shaping matrix. M is the mass matrix of the robot and 
W is the angular velocity matrix of the robot, 𝑤𝑤𝑆𝑆 is 
the vector of external forces acting on the robot. 

 Results and discussion 

 The results of the analytical model based on the 
screw theory and sim-mechanics simulation are 
presented in Figure 4. 

Fig. 4. The driving force the actuators and the error 
percentage with the simulation results 
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where the matrix K with dimensions 6n × 6(n − 1) 
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The physical interpretation of orientations in which the 
determinant of the Jacobian matrix becomes zero and 
the robot is placed in a singular state is shown in 
Figure 5. 

  
 

Fig. 5. Robot orientation in a singular configuration 
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the contour of the robot’s dexterity for an optimal position 
and orientation.

4- conclusion
The aim of this research is the kinematic and dynamic 

analysis of a parallel robot. The Jacobian matrix and the 
dynamic equations of the robot were derived using the screw 
theory. By calculating the Jacobian matrix, singular points of 
the robot were extracted and by applying physical constraints, 
an algorithm was presented to calculate the working space 
of the robot. Then, the dexterity index was presented as a 
measure of the distance of the robot from singular points. 
This index was checked in the working space of the robot 
and it was determined that the robot has the highest value of 
dexterity index at the height of z=0.25m and 51α =  .
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