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ABSTRACT: In this research, a novel trigeneration system driven by biomass-solar energies has been 
investigated from energy exergy, economic and environmental viewpoints. The solar energy is used 
to produce hydrogen (by a PEM electrolyzer powered by thermal photovoltaic panels). To meet the 
intermittent nature of solar energy, it is used for hydrogen production. The hydrogen is used as fuel 
in the combustion chamber. The proposed gas turbine cycle consists of two high and low-pressure 
turbines and two compressors with an intercooler. A combined organic Rankine-vapor compression 
refrigeration cycle that uses the recovered heat from the gas turbine is used to produce refrigeration and 
air cooling in the interstage compressor. The obtained results provide that the combination of solar-based 
hydrogen production and biomass-based gas turbine leads to an increase in power production capacity. 
The proposed combined system provides an energy and exergy efficiency of 21% and 17% and the 
emission of 0.00884 kg/s of CO2. The highest capital cost rate among the components is attributed to 
the PEM electrolyzer, amounting to 15.44 $/hr, and the total cost of the products has reached 0.5627 $/
MJ. Using an intercooler, the energy and exergy efficiencies of the system have increased by 6% and 
4%, respectively.
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1- Introduction
To achieve sustainable development, the industrial 

sector of any country is highly dependent on the production 
and supply of clean energy. Harmful pollutant emissions 
from fossil fuels have compelled countries to shift towards 
renewable energy sources [1]. Among the various types of 
renewable energy, solar and biomass sources stand out as 
suitable alternatives due to their availability and abundance [2-
3]. However, the inconsistency and fluctuation of solar energy 
pose significant challenges. To enhance reliability, addressing 
the drawbacks of using a single source of renewable energy 
can be achieved by combining sources. For instance, solar 
energy can be utilized to produce hydrogen, and by burning 
it, a continuous heat source can be obtained. Recently, there 
has been considerable attention given to the combined use of 
solar and biomass energies in energy production systems. In 
such systems, biomass typically serves as the primary fuel, 
while solar energy acts as an auxiliary energy source [4].

Many studies have been conducted by researchers to use 
alternative energies in energy production systems. Anvari 
et al. [5] introduced novel configurations of biomass-solar 
combined power generation cycles. In these systems, solar 
energy was harnessed through a heliostat field to reheat the 
exhaust gases generated by a biomass-fueled gas turbine. 
Gaeta [6] analyzed a 100 kW gas turbine using a mixture of 

natural gas and hydrogen fuels, reporting natural gas savings 
ranging from 41.5% to 37.5%. In a study by Ahmadi et al 
[7], a multigeneration system involving power, hydrogen, 
heating, and cooling was investigated. The results indicated 
that the use of the multigeneration cycle increased exergy 
efficiency by 60% compared to a simple energy generation 
cycle.

The overview of research in the field of multigeneration 
systems highlights a notable gap in studies focusing on power 
generation cycles integrating both hydrogen and biomass 
fuels. Additionally, there are a limited number of studies 
exploring the combined organic Rankine-vapor compression 
refrigeration cycle for cooling, especially at the intermediate 
compression stage, with the use of recycled heat from the gas 
turbine.

2- Thermodynamic Modelling
Figure 1 illustrates the schematic of the proposed 

trigeneration system, comprising a gas turbine (representing 
the upper cycle) and an organic Rankine cycle-vapor 
compression refrigeration system (representing the lower 
cycle). The system incorporates a combination of biomass 
and solar energy sources. Biomass serves as the primary fuel, 
while solar energy is employed to produce hydrogen. The 
produced hydrogen is then burned in the combustion chamber 
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to reheat the exhaust gas originating from the high-pressure 
turbine.

To model the energy and exergy of the system, the laws of 
conservation of mass and energy and the equation of exergy 
balance must be used for each component of the system. 
Thus, each component is considered as a control volume. 
These equations are defined through Eqs. (1-3) [8].
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Results 

To determine accuracy, the calculations were 
compared with the findings of previous research, and 
the results are depicted in Figure 2. For validation 
purposes, the systems were compared under similar 
performance conditions of modeling, and the results 
indicate a good agreement between them. 
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Fig. 2. Gas turbine cycle modeling results [9] 
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biomass fuel is the sole source.

4- Conclusion
In this research, a thermodynamic investigation was 

conducted on a triple production system involving power, 
heat, and cooling, utilizing a combination of solar energy 
sources and biomass. The introduction of a refrigerant 
production subsystem, with partial utilization for intermediate 
cooling of compressors, resulted in a 6% increase in energy 
efficiency and a 4% increase in exergy efficiency for the 
system. The incorporation of a thermal photovoltaic system 
and an electrolyzer for hydrogen production, while leading 
to an increase in exergy destruction and economic costs, 
contributed to a substantial (89%) reduction in carbon dioxide 
gas emissions. Also, the proposed combined system has high 
flexibility and when there is no need for cooling, the power 
of the organic Rankine cycle turbine can be used directly to 
produce electricity.
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The PEM electrolyzer has the most significant 
economic impact, constituting 44% of the total 
investment. Meanwhile, the thermal photovoltaic panel 
accounts for the highest amount of exergy destruction. 
The increased costs associated with the electrolyzer 
and thermal photovoltaic panel could potentially be 
offset by reducing the costs of exergy destruction in 
these equipment. The high cost of the gas turbine cycle 
is primarily attributed to the turbine, with the presence 
of the combustion chamber and heat exchangers being 
secondary factors. Essentially, the turbine used in gas 
turbine cycles holds paramount importance from a 
design perspective.  

 
Fig. 3. The cost rate of different components of the system 

The diagram in Figure 4 illustrates that by 
incorporating the intercooler and lowering the 
temperature of the incoming air to the high-pressure 
compressor to ambient levels, there is a potential 
increase of approximately 6% in energy efficiency and 
4% in exergy efficiency. 

 

Fig. 4. The effect of using an intercooler on the system 
energy and exergy efficiencies 

Figure 5 depicts the carbon dioxide emissions for 
the investigated triple production system. According to 
the figure, the amount of carbon dioxide gas emissions 
increases by 89% in scenarios where hydrogen fuel is 
not utilized, and biomass fuel is the sole source. 

 
Fig. 5. Comparison of the amount of CO2 emission 

Conclusion 

In this research, a thermodynamic investigation was 
conducted on a triple production system involving 
power, heat, and cooling, utilizing a combination of 
solar energy sources and biomass. The introduction of 
a refrigerant production subsystem, with partial 
utilization for intermediate cooling of compressors, 
resulted in a 6% increase in energy efficiency and a 4% 
increase in exergy efficiency for the system. The 
incorporation of a thermal photovoltaic system and an 
electrolyzer for hydrogen production, while leading to 
an increase in exergy destruction and economic costs, 

Fig. 5. Comparison of the amount of CO2 emission
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