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ABSTRACT  

Fault diagnosis of mechanical systems is of special importance for better system performance as well as its 

protection. In this work, a rotary machine laboratory system is used to generate signals. The obtained data are 

placed in the pre-processing process. In this article, to improve the performance of signal analysis, the combined 

analysis methods using signal features and Kalman filter are proposed. First, the Kalman filter is used to reduce 

the signal noise. In the following, for signal pre-processing, the features of the signal in the time domain and 

frequency domain are suggested, which have been used as one-dimensional signal pre-processing. In the 

following, several neural networks such as support vector machine, multilayer perceptron, and convolutional 

neural networks have been used to analyze the obtained features. To check the results, the data is divided into 

training data and validation data. Accuracy results for validation data are examined in different methods. The 

results indicate the better performance of the AlexNet convolutional neural network in the presence of the 

Kalman filter noise reduction. In this case, this network has reached an average of 96.1% accuracy for validation 

data, which has been improved compared to other classifiers and fault diagnosis without noise reduction.  
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1. Introduction 

Today, intelligent fault diagnosis has become a crucial 

aspect of the mechanical system. The faults can lead to 

severe damage and complications. Hence, early detection 

of defects in the early stages is of paramount importance. 

In this context, the processing of vibration signals for 

rotary mechanical systems can prove to be highly 

effective in fault detection before system failure. Here is 

a brief summary of the tasks involved in detecting faults 

in rotary machinery. 

Junior et al. employed signal pre-processing 

techniques for fault diagnosis in rotating machinery [1]. 

Zakizadeh et al. utilized vibration analysis in conjunction 

with support vector machine algorithms to diagnose 

faults in the rotary blower systems of Alstom 

locomotives [2]. Shekarzadeh et al. introduced an 

independent component analysis and particle batch 

optimization for diagnosing defects in centrifuge 

bearings [3]. Several noise reduction methods, including 

the integration of Kalman filtering with signal analysis 

techniques, yield promising results in this field [4]. 

This article presents a novel approach that combines 

feature extraction and the Kalman filter noise reduction 

for fault diagnosis. Features are extracted from clean 

signals in the time and frequency domains. The 

preprocessed data are utilized as training data for 

different networks. By utilizing the capabilities of neural 

networks, the article aims to enhance the accuracy and 

effectiveness of fault diagnosis. 

2. Experimental Data Collection 

In this study, vibration data from a rotary machine is 

utilized. Figure 1 illustrates the configuration of the 

system, which consists of an alternating current motor 

connected to a rod mounted on three bearings. The 

system also includes discs that can cause the disk to 

become unbalanced. Two sensors are placed on the first 

and second bearings from the right side to record signal 

data. The bearing locations are indicated in Figure 1. 

To capture validation signals from this rotary 

machine, three types of faults are introduced: bearing ball 

defects, rod imbalance, and bearing outer ring defects. 

Additionally, signals are recorded in a healthy system 

state. To record the signals in various system states (both 

faulty and healthy), the motor feeding frequency is varied 

between 8 and 30 Hz in 2 Hz increments and it has a rated 

speed of 2825 rpm at a feeding frequency of 50 Hz and a 

power rating of 370 watts. 

During data recording, the healthy system state is 

considered as the baseline. In the case of bearing ball 

failure, the defective bearing is placed in three different 

positions as depicted in Figure 1. Similarly, for the outer 

ring failure, the defective bearing is placed in three 

positions. As for rod imbalance, weights are added to 

each of the six discs mounted on the rotating rod. Overall, 

there are 13 system modes considering the general states 

of healthy and faulty systems. Data recording is done 

across 12 different motor feeding frequencies, resulting 

in a total of 156 primary data points. Each of these 156 

primary data points includes two one-minute signals (due 

to the two sensors in the system) and four labels 

indicating the system state (healthy or faulty). The 

signals are recorded at a rate of 10,000 pulses per second. 

 

Figure 1: Laboratory rotating machine for data recording 

A targeted random method is employed to split the 

data into training and validation sets. About 20% of the 

156 data points are allocated as validation data. In each 

case of system mode, 2 or 3 validation data points are 

randomly selected. To ensure robustness in the analysis, 

the data division is performed five times, allowing for 

better analysis of the results.  

3. Feature Extraction 

To analyze the signals, feature extraction is performed in 

both the time and frequency domains. Fourteen features 

are extracted in the time domain [5], while nine features 

are extracted in the frequency domain [6].  

In the time domain, the signal is directly processed 

for feature extraction. In the frequency domain, prior to 

feature extraction, the signal spectrum must be obtained. 

The signal can be transformed to the frequency domain 

by Fast Fourier Transform (FFT). 

4. Evaluation of Neural Network Training Results 

As previously explained, 23 features are extracted from 

each signal, resulting in 46 numerical values recorded for 

each data point. Therefore, the input data dimensions for 

the MLP and SVM neural networks are 125 x 46, 

representing 125 data points out of the total 156 

(considered as training data). Additionally, for CNN 

models with Inception and AlexNet architectures, the 

input data is reshaped into a 2D format to enable analysis 

with 2D convolutional tools. Consequently, the last 

feature is omitted, and the remaining 45 features are 
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arranged as a 5 x 9 matrix, resulting in input dimensions 

of 125 x 5 x 9 for the CNN network. 

To assess the impact of signal noise reduction, since 

the variance of the system noise is unknown, trial and 

error method is used to set different values (0.25, 0.5, and 

0.75) for the measurement noise covariance R. Therefore, 

the noise of desired signal is reduced in three modes, 

while a mode without noise reduction is also considered 

during feature extraction. Considering the influence of 

data division on the neural network training results, each 

classifier is trained in five different data divisions and 

mean value of the results are shown in table 1. The results 

indicate that the AlexNet network performs better than 

the others 

Table 1: The mean of the validation data accuracy for each 

classifier for each Kalman noise reduction mode 

  0.25R    0.5R    0.75R   
Not 

denoise 

Classifier Mean Mean Mean Mean 

SVM 0.935 0.942 0.922 0.910 
MLP 0.948 0.948 0.935 0.955 

Inception 0.942 0.948 0.935 0.948 
AlexNet 0.961 0.961 0.955 0.955 

To compare the effect of noise reduction achieved by 

the Kalman filter, the mean and variance of the accuracy 

for all validation data are calculated for each noise 

reduction mode in Table 2. It is observed that the best 

accuracy for evaluation data is obtained when the 

measurement noise covariance R is set to 0.5. 

Consequently, the accuracy is improved compared to the 

mode without noise reduction. The accuracy results for 

validation data show less variation when the 

measurement noise covariance is set to  0.75R  . 

Finally, based on tables 1 and 2, it can be concluded that 

the AlexNet neural network yields the best results in 

reducing Kalman filter noise with an R value of 0.5. 

Table 2: The mean and variance of accuracy of the 

validation data for all classifiers for each Kalman noise 

reduction mode 

Noise reduction mode Mean Variance 

 0.25R   0.947 0.0012 

 0.5R   0.95 0.0014 

 0.75R   0.937 0.009 

Without Noise reduction 0.942 0.0017 

5. Conclusions 

The objective of this study was to examine the 

influence of noise reduction through the utilization of the 

Kalman filter on fault detection in the rotary machine. 

The laboratory data underwent noise reduction using the 

Kalman filter in various modes. Subsequently, features 

were extracted from the signals. Various neural 

networks, including SVM, MLP, Inception, and AlexNet, 

were trained using these datasets. 

In the investigation of signal noise reduction, the 

AlexNet network consistently outperformed other 

methods. The best accuracy results were obtained with 

the measurement noise covariance  0.5R  . The 

AlexNet network achieved an accuracy of 96.1% with 

 0.5R  . Comparing the average results for different 

noise reduction modes across all classifiers, an accuracy 

of 95% was achieved with a measurement noise 

covariance of  0.5R  , which showed improvement 

compared to the mode without noise reduction. 

Future work could involve optimizing the covariance 

values of Q and R in the Kalman filter for signal noise 

reduction. Since the noise covariance of the recorded 

signals is unknown, these values can be determined 

through optimization methods to further enhance the 

performance of the system. 
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