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ABSTRACT: In this research, two new superhard metallic carbon allotropes αC28 and βC32 are 
predicted using density functional theory (DFT). These stable tetragonal structures belong to the P4/
MMM space group. Molecular dynamics simulation performed under canonical ensemble (NVT) to 
investigate the thermal stability of new αC28 and βC32 carbon crystals at temperatures of 300 and 
1000 K, confirms their thermal stability. In addition, we calculated the mechanical coefficients and 
band gap energy of these two structures to examine their mechanical and electronic stability. These new 
carbon allotropes are composed of sp2 and sp3 bond hybridization, which shows excellent mechanical 
properties with Vickers hardness of 45.7 and 47.9 GPa. Other mechanical properties of these crystals 
such as bulk modulus (265.8, 284.9), shear modulus (254.7, 273.5), and Young’s modulus (579.1, 621.6) 
also confirm the superhardness of these structures. The results related to the electronic band structures 
indicate that both structures have metallic properties. The width of both conduction and valance bands for 
both structures is about 20 eV. The results of calculations show that αC28 and βC32 can be synthesized 
in the laboratory in the future and will have potential applications in mechanical and electronic devices. 
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1- Introduction
Carbon, as one of the most important elements of superhard 

materials, has a valence electron structure of 2s22p2, which can 
create new allotropes with different properties with sp, sp2, and 
sp3 hybrid bonds. Among them, the most famous and widely 
used superhard material is diamond, due to its scarcity in the 
world and complicated conditions for laboratory synthesis, 
the search for new superhard materials has attracted the 
attention of many researchers[1, 2]. In this study, we proposed 
two new superhard tetragonal carbon structures named 
αC28 and βC32, whose electronic and mechanical properties 
were investigated through density functional theory (DFT). 
With many searches in SACADA[3], and RCSR[4] carbon 
databases and articles in this field, the originality of these 
two structures was confirmed for the authors. The structural, 
electronic, and elastic properties along with elastic anisotropy 
properties, and thermal, dynamic, and mechanical stability of 
these structures have been investigated in this research work. 

2- Methodology
In recent years, DFT has been used as an important 

theoretical tool to predict the physical properties of various 
new crystals[5]. Here, the calculations were performed using 
the fixed core PAW method with the help of the SIESTA 
simulation code, in which the within the general gradient 

approximation (GGA) with the correlation function of the 
PBE code was used to parameterize the potential exchange-
correlation[6].

3- Results and Discussion 
The investigated crystals consist of four, five, and eight-

sided irregular carbon rings, whose network parameters at 
ambient pressure are shown in Table 1.
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Fig. 1. Crystal structure of αC28 and βC32. 
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The proposed αC28 and βC32 superhard carbon structures 
have tetragonal symmetry and P4/MMM group, which are 
shown in Fig.1. These structures consist of four types of non-
equivalent carbon atoms, which are marked with different 
colors in the figure.

To investigate the thermal stability of αC28 and βC32 
carbon crystals at temperatures above zero such as 300 and 
1000 K, molecular dynamics simulation was performed 
under canonical ensemble (NVT). 

In Fig. 2 and Fig. 3, throughout the simulation, the total 
energy fluctuates around a constant value at 300 K and 
1000 K, so these new crystalline phases have good thermal 
stability in the mentioned temperature range. To determine 
the mechanical stability, the values ​​of independent elastic 
constants C11, C12, C13, C33, C44, and C66 related to carbon 
crystals αC28 and βC32 are calculated and the results are 
listed in Table (2). The elastic constant components αC28 and 
βC32 are consistent with the mentioned Born equations (Eq. 
1), which can be concluded that the predicted structures are 
mechanically stable at ambient pressure.

 

C66 related to carbon crystals αC28 and βC32 are 
calculated and the results are listed in Table (2). The 
elastic constant components αC28 and βC32 are 
consistent with the mentioned Born equations (Eq. 1), 
which can be concluded that the predicted structures are 
mechanically stable at ambient pressure. 
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 To check the electrical properties, the band structure of 
these crystals was calculated at the symmetrical points 
shown in Fig. 4 and Fig. 5 (the Fermi level is at zero). 

Table 2. Calculated elastic constants, elastic modulus 
(GPa), and hardness (GPa) of αC28 and βC32. 

 diamond αC28 βC32 
C11 1056.2 672 697 
C33 - 535 627 
C44 566.7 281 286 
C66 - 193 223 
C12 120.1 162 125 
C13 - 56 75 
B 431 265.8 284.9 
G 522 254.7 273.5 
E 1116 579.1 621.6 
v 0.07 0.136 0.135 

B/G 0.825 1.044 1.042 
Hv 89 45.7 47.9 

As can be seen in the figure, both structures are 
these new carbon allotropes are metallic and there is no 
energy gap between valence and conduction bands. 

 

 

 

 

 

 

 

 

Fig. 4. Electronic band structure for αC32 

In the end, to ensure the establishment of bonds and 
the formation of hybridization between carbon atoms, 
the density of electrons in the inner space of the unit cell 
was investigated and calculated, and the results of the 
calculations are shown in Fig. 6. As the figure shows, 
the corresponding bonds are formed and the electrons 
are spread around the atomic bonds.  

 

 

 

 

 

 

 

 

Fig. 5. Electronic band structure for αC28 

 
 

Fig. 6. Electron charge density of αC28 and 
βC32. 

 Conclusions 

In this study, based on DFT method, two new 
superhard carbon structures that have metallic properties 
were predicted. It was found that the structures of αC28 
and βC32 are mechanically and thermodynamically 
stable, which was done by elastic constants and 
checking the energy calculation, respectively. 
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Fig. 1. Crystal structure of αC28 and βC32.

Table 2. Calculated elastic constants, elastic modulus 
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Fig. 2. Total energy fluctuations versus time for αC32 
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Fig. 3. Total energy fluctuations versus time for αC28 
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in Fig. 6. As the figure shows, the corresponding bonds are 
formed and the electrons are spread around the atomic bonds. 

4- Conclusions
In this study, based on DFT method, two new superhard 

carbon structures that have metallic properties were 
predicted. It was found that the structures of αC28 and βC32 are 
mechanically and thermodynamically stable, which was done 
by elastic constants and checking the energy calculation, 
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C66 related to carbon crystals αC28 and βC32 are 
calculated and the results are listed in Table (2). The 
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In the end, to ensure the establishment of bonds and 
the formation of hybridization between carbon atoms, 
the density of electrons in the inner space of the unit cell 
was investigated and calculated, and the results of the 
calculations are shown in Fig. 6. As the figure shows, 
the corresponding bonds are formed and the electrons 
are spread around the atomic bonds.  
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