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ABSTRACT: Leveraging artificial intelligence to forecast heat transfer characteristics across diverse 
industries holds significant potential for improving thermal equipment design, increasing heat transfer 
efficiency, optimizing cooling systems, and reducing energy consumption. The main contribution 
and purpose of the current study is predicting the Nusselt number in the context of turbulent flow-
induced vibration around a heated cylinder experiencing unconfined oscillations along both streamwise 
and transverse axes. The anticipation of the Nusselt number relies on transverse and streamwise 
displacements of the oscillating cylinder and encompasses three distinct scenarios: displacement input 
in the x-direction, displacement input in the y-direction, and comprehensive amalgamation of both x 
and y inputs. This prediction is achieved through a sophisticated deep long short-term memory network, 
meticulously crafted and fine-tuned using a particle swarm optimization algorithm. The results highlight 
the effectiveness of the optimized networks across various inputs, with the highest predictive precision 
observed when employing combined x and y inputs. The correlation coefficients within the test segment 
are as follows: 0.967 for x input, 0.961 for y input, and 0.975 for combined x and y inputs. By applying 
the methodology elucidated in this study, the forecasting of heat transfer characteristics for structures 
subjected to fluid flow emerges as a feasible possibility.
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1- Introduction
The study of heat transfer in the field of vortex-induced 

vibration (VIV) encompasses various engineering and 
research areas, including computational fluid dynamics, 
structural mechanics, and thermal sciences. When a heated 
cylinder is immersed in fluid flow, complex interactions 
arise between the convective heat transfer from the fluid and 
the dynamic response of the cylinder due to fluid-induced 
vibrations. Understanding these interactions is crucial for 
numerous engineering applications, such as designing heat 
exchangers and offshore structures [1]. Predicting the Nusselt 
number in the context of vortex-induced vibration is vital 
because of its significant role in a wide range of engineering 
applications [2, 3]. Accurate predictions of the Nusselt 
number can enhance the efficiency and safety of various 
industrial systems. Recently, the application of machine 
learning methods in heat transfer science has expanded, 
yielding significant results. For example, Zhai et al. [4] 
used random forest machine learning algorithms to improve 
experimental correlations for microchannel membrane-based 
adsorbents. Sundar et al. [5] experimentally estimated the 
thermal efficiency, heat transfer coefficient, and friction 

coefficient in a solar collector using MgO/water nanofluid. 
Han et al. [6] investigated the heat transfer and complex flow 
behaviors in a supercritical CO2 Brayton cycle precooler. Vu 
et al. [7] developed a machine-learning model to accurately 
predict the heat transfer coefficient between glass and steel 
surfaces.

A review of the literature reveals several studies on (1) 
vortex-induced vibration of oscillating structures, (2) heat 
transfer characteristics of heated vibrating cylinders, and 
(3) the application of various machine learning methods, 
particularly artificial neural networks, in thermal sciences. 
However, there has not been a comprehensive study focusing 
on the prediction of heat transfer characteristics in the context 
of flow-induced vibration, specifically with temporal behavior 
in mind. The main novelty and contribution of this work lie 
in employing a new method for predicting time series: the 
long-short-term memory network (LSTM) optimized by the 
particle swarm optimization algorithm (PSO). This method is 
used to predict the temporal behavior of the Nusselt number 
for a heated cylinder placed on an elastic bed in a turbulent 
flow.
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2- Methodology
Recurrent neural networks (RNNs) often face an 

overfitting problem, where the network either loses important 
information over time or accumulates too much data in its 
hidden state, negatively impacting the output. To address 
this issue, more advanced architectures like long short-
term memory (LSTM) networks have been developed. 
LSTM networks use special structures to control the flow of 
information, allowing them to overcome the limitations of 
traditional RNNs, especially over longer periods. Figure 1 
shows an LSTM unit.

Figure 2 illustrates a cylinder on an elastic bed at a constant 
temperature, exposed to a flow that causes it to oscillate 
freely in both transverse and longitudinal directions due to 
vortex shedding. In this study, the cylinders are assumed to 
be very long, and the vortex-induced vibration is modeled 
in two dimensions. The Reynolds number of the flow varies 
between 1700 and 13000 as the free flow speed increases. 
To model the turbulent flow, the unsteady Reynolds-Navier-
Stokes intermediate approach is used. A well-known method 
for mathematically modeling VIV is the simple and classic 
mass-spring-damper model. Detailed descriptions of the 
numerical solution methods for turbulent flow and heat 
transfer, structural equations, computing network setup, 
boundary condition definitions, two-way flow-structure 
interaction, grid independence investigation, and validation 
of the numerical solution can be found in references [8].

3- Discussion and Results
The optimal parameters for the LSTM network were 

determined to be 4 hidden layers, 23 neurons, and a dropout rate 
of 0.138. The time response of the cylinder’s displacements, 
and consequently the Nusselt number, is sinusoidal due to the 
fluctuating vortices and the oscillating lift and drag forces 
acting on the cylinder. Figure 3 presents the scatter diagram 
for the model with two inputs, x and y. The data correlation 
in the model with two inputs is higher than in the model 
with a single input. This increased correlation is evident in 
both the training and testing datasets. Figure 4 illustrates the 
temporal changes of the Nusselt number during the training 
and testing phases. It is clear that the machine learning model 

successfully predicted the Nusselt number. Additionally, the 
graph shows that the network’s accuracy is higher during the 
training phase compared to the testing phase.

4- Conclusions
The key findings from this research are as follows: The 

cylinder’s longitudinal vibration frequency is twice that of 
its transverse vibration frequency. Data correlation is better 
during the training phase than the testing phase because 
the network builds the model using the training data and 
has not encountered the testing data. The results indicate 
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number, is sinusoidal due to the fluctuating vortices and 
the oscillating lift and drag forces acting on the 
cylinder. Figure 3 presents the scatter diagram for the 
model with two inputs, x and y. The data correlation in 
the model with two inputs is higher than in the model 
with a single input. This increased correlation is evident 
in both the training and testing datasets. Figure 4 
illustrates the temporal changes of the Nusselt number 
during the training and testing phases. It is clear that the 
machine learning model successfully predicted the 
Nusselt number. Additionally, the graph shows that the 
network's accuracy is higher during the training phase 
compared to the testing phase. 

 
Fig. 3. Scatter plot for the network with input  for 

two phases of training and testing 
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cylinder's longitudinal vibration frequency is twice that 
of its transverse vibration frequency. Data correlation is 
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because the network builds the model using the training 
data and has not encountered the testing data. The 
results indicate that predicting the Nusselt number based 
on the cylinder's transverse and longitudinal 
displacements is successful. This method could replace 
the complex and expensive techniques currently used 
for measuring the Nusselt number in various industries. 
Measuring the cylinder's displacement is 
straightforward with displacement sensors, and machine 
learning methods can be used to predict the heat transfer 
characteristics of structures based on this data. 
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that predicting the Nusselt number based on the cylinder’s 
transverse and longitudinal displacements is successful. 
This method could replace the complex and expensive 
techniques currently used for measuring the Nusselt number 
in various industries. Measuring the cylinder’s displacement 
is straightforward with displacement sensors, and machine 
learning methods can be used to predict the heat transfer 
characteristics of structures based on this data.

References
[1] 	L. Ding, H. He, T. Song, Vortex-induced vibration and 

heat dissipation of multiple cylinders under opposed 
thermal buoyancy, Ocean Engineering, 270 (2023) 
113669.

[2] S.M. Ibrahim, A. Abdelmaksoud, W. Helal, Heat transfer 
characteristics for multi-silicon ingots irradiation in 
a typical research reactor, International Journal of 
Thermofluids, 20 (2023) 100411.

[3] D. Yu, D. Zhang, L. Wu, X. Kong, Q. Yue, Analysis of the 
influence of convection heat transfer in circular tubes on 
ships in a polar environment, Atmosphere, 13(2) (2022) 
149.

[4] C. Zhai, Y. Sui, W. Wu, Machine learning-assisted 
correlations of heat/mass transfer and pressure drop of 
microchannel membrane-based desorber/absorber for 
compact absorption cycles, International Journal of Heat 
and Mass Transfer, 214 (2023) 124431.

[5] L.S. Sundar, K.V.C. Mouli, Experimental analysis 
and Levenberg-Marquardt artificial neural network 
predictions of heat transfer, friction factor, and efficiency 
of thermosyphon flat plate collector with MgO/water 
nanofluids, International Journal of Thermal Sciences, 
194 (2023) 108555.

[6] Z. Han, J. Guo, J. Chen, X. Huai, Experimental 
and numerical investigations on thermal-hydraulic 
characteristics of supercritical CO2 flows in printed 
circuit heat exchangers, International Journal of Thermal 
Sciences, 194 (2023) 108573.

[7] A.T. Vu, S. Gulati, P.-A. Vogel, T. Grunwald, T. Bergs, 
Machine learning-based predictive modeling of contact 
heat transfer, International Journal of Heat and Mass 
Transfer, 174 (2021) 121300.

[8] M. Esmaeili, A.H. Rabiee, Active feedback VIV control 
of sprung circular cylinder using TDE-iPID control 
strategy at moderate Reynolds numbers, International 
Journal of Mechanical Sciences, 202 (2021) 106515.

HOW TO CITE THIS ARTICLE
A. H. Rabiee, M. Esmaeili, Prediction of Nusselt number of heated cylinder exposed to turbu-
lent flow by deep long short-term memory network optimized by particle swarm algorithm , 
Amirkabir J. Mech Eng., 55(11) (2024) 287-290.

DOI: 10.22060/mej.2024.22621.7652

3 

number, is sinusoidal due to the fluctuating vortices and 
the oscillating lift and drag forces acting on the 
cylinder. Figure 3 presents the scatter diagram for the 
model with two inputs, x and y. The data correlation in 
the model with two inputs is higher than in the model 
with a single input. This increased correlation is evident 
in both the training and testing datasets. Figure 4 
illustrates the temporal changes of the Nusselt number 
during the training and testing phases. It is clear that the 
machine learning model successfully predicted the 
Nusselt number. Additionally, the graph shows that the 
network's accuracy is higher during the training phase 
compared to the testing phase. 

 
Fig. 3. Scatter plot for the network with input  for 

two phases of training and testing 

4. Conclusions 

The key findings from this research are as follows: The 
cylinder's longitudinal vibration frequency is twice that 
of its transverse vibration frequency. Data correlation is 
better during the training phase than the testing phase 
because the network builds the model using the training 
data and has not encountered the testing data. The 
results indicate that predicting the Nusselt number based 
on the cylinder's transverse and longitudinal 
displacements is successful. This method could replace 
the complex and expensive techniques currently used 
for measuring the Nusselt number in various industries. 
Measuring the cylinder's displacement is 
straightforward with displacement sensors, and machine 
learning methods can be used to predict the heat transfer 
characteristics of structures based on this data. 

 
Fig. 4. Variation of the Nusselt number for the network 
with input   for two phases of training and testing 

5. References 

[1] L. Ding, H. He, T. Song, Vortex-induced vibration 
and heat dissipation of multiple cylinders under opposed 
thermal buoyancy, Ocean Engineering, 270 (2023) 
113669. 
[2] S.M. Ibrahim, A. Abdelmaksoud, W. Helal, Heat 
transfer characteristics for multi-silicon ingots 
irradiation in a typical research reactor, International 
Journal of Thermofluids, 20 (2023) 100411. 
[3] D. Yu, D. Zhang, L. Wu, X. Kong, Q. Yue, Analysis 
of the influence of convection heat transfer in circular 
tubes on ships in a polar environment, Atmosphere, 
13(2) (2022) 149. 
[4] C. Zhai, Y. Sui, W. Wu, Machine learning-assisted 
correlations of heat/mass transfer and pressure drop of 
microchannel membrane-based desorber/absorber for 
compact absorption cycles, International Journal of Heat 
and Mass Transfer, 214 (2023) 124431. 
[5] L.S. Sundar, K.V.C. Mouli, Experimental analysis 
and Levenberg-Marquardt artificial neural network 
predictions of heat transfer, friction factor, and 
efficiency of thermosyphon flat plate collector with 
MgO/water nanofluids, International Journal of Thermal 
Sciences, 194 (2023) 108555. 
[6] Z. Han, J. Guo, J. Chen, X. Huai, Experimental and 
numerical investigations on thermal-hydraulic 
characteristics of supercritical CO2 flows in printed 
circuit heat exchangers, International Journal of 
Thermal Sciences, 194 (2023) 108573. 
[7] A.T. Vu, S. Gulati, P.-A. Vogel, T. Grunwald, T. 
Bergs, Machine learning-based predictive modeling of 
contact heat transfer, International Journal of Heat and 
Mass Transfer, 174 (2021) 121300. 
[8] M. Esmaeili, A.H. Rabiee, Active feedback VIV 
control of sprung circular cylinder using TDE-iPID 
control strategy at moderate Reynolds numbers, 
International Journal of Mechanical Sciences, 202 
(2021) 106515. 

 

Fig. 4. Variation of the Nusselt number for the network 
with input  for two phases of training and testing

https://dx.doi.org/10.22060/mej.2024.22621.7652


This
 pa

ge
 in

ten
tio

na
lly

 le
ft b

lan
k


	Blank Page - EN.pdf
	_GoBack




