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ABSTRACT: Fault diagnosis of mechanical systems is of special importance for better system 
performance as well as its protection. In this work, a rotary machine laboratory system is used to 
generate signals. The obtained data are placed in the pre-processing process. In this article, to improve 
the performance of signal analysis, the combined analysis methods using signal features and Kalman 
filter are proposed. First, the Kalman filter is used to reduce the signal noise. In the following, for signal 
pre-processing, the features of the signal in the time domain and frequency domain are suggested, which 
have been used as one-dimensional signal pre-processing. In the following, several neural networks such 
as support vector machine, multilayer perceptron, and convolutional neural networks have been used to 
analyze the obtained features. To check the results, the data is divided into training data and validation 
data. Accuracy results for validation data are examined in different methods. The results indicate the 
better performance of the AlexNet convolutional neural network in the presence of the Kalman filter 
noise reduction. In this case, this network has reached an average of 96.1% accuracy for validation data, 
which has been improved compared to other classifiers and fault diagnosis without noise reduction. 
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1- Introduction
Today, intelligent fault diagnosis has become a crucial 

aspect of the mechanical system. The faults can lead to severe 
damage and complications. Hence, early detection of defects 
in the early stages is of paramount importance. In this context, 
the processing of vibration signals for rotary mechanical 
systems can prove to be highly effective in fault detection 
before system failure. Here is a brief summary of the tasks 
involved in detecting faults in rotary machinery.

Junior et al. employed signal pre-processing techniques 
for fault diagnosis in rotating machinery [1]. Zakizadeh et al. 
utilized vibration analysis in conjunction with support vector 
machine algorithms to diagnose faults in the rotary blower 
systems of Alstom locomotives [2]. Shekarzadeh et al. 
introduced an independent component analysis and particle 
batch optimization for diagnosing defects in centrifuge 
bearings [3]. Several noise reduction methods, including 
the integration of Kalman filtering with signal analysis 
techniques, yield promising results in this field [4].

This article presents a novel approach that combines 
feature extraction and the Kalman filter noise reduction for 
fault diagnosis. Features are extracted from clean signals in 
the time and frequency domains. The preprocessed data are 
utilized as training data for different networks. By utilizing 
the capabilities of neural networks, the article aims to enhance 
the accuracy and effectiveness of fault diagnosis.

2- Experimental Data Collection
In this study, vibration data from a rotary machine is 

utilized. Figure 1 illustrates the configuration of the system, 
which consists of an alternating current motor connected to 
a rod mounted on three bearings. The system also includes 
discs that can cause the disk to become unbalanced. Two 
sensors are placed on the first and second bearings from the 
right side to record signal data. The bearing locations are 
indicated in Figure 1.

To capture validation signals from this rotary machine, 
three types of faults are introduced: bearing ball defects, 
rod imbalance, and bearing outer ring defects. Additionally, 
signals are recorded in a healthy system state. To record the 
signals in various system states (both faulty and healthy), the 
motor feeding frequency is varied between 8 and 30 Hz in 
2 Hz increments and it has a rated speed of 2825 rpm at a 
feeding frequency of 50 Hz and a power rating of 370 watts.

During data recording, the healthy system state is 
considered as the baseline. In the case of bearing ball failure, 
the defective bearing is placed in three different positions 
as depicted in Figure 1. Similarly, for the outer ring failure, 
the defective bearing is placed in three positions. As for 
rod imbalance, weights are added to each of the six discs 
mounted on the rotating rod. Overall, there are 13 system 
modes considering the general states of healthy and faulty 
systems. Data recording is done across 12 different motor 
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feeding frequencies, resulting in a total of 156 primary data 
points. Each of these 156 primary data points includes two 
one-minute signals (due to the two sensors in the system) and 
four labels indicating the system state (healthy or faulty). The 
signals are recorded at a rate of 10,000 pulses per second.

A targeted random method is employed to split the data 
into training and validation sets. About 20% of the 156 data 
points are allocated as validation data. In each case of system 
mode, 2 or 3 validation data points are randomly selected. 
To ensure robustness in the analysis, the data division is 
performed five times, allowing for better analysis of the 
results. 

3- Feature Extraction
To analyze the signals, feature extraction is performed 

in both the time and frequency domains. Fourteen features 
are extracted in the time domain [5], while nine features are 
extracted in the frequency domain [6]. 

In the time domain, the signal is directly processed for 
feature extraction. In the frequency domain, prior to feature 
extraction, the signal spectrum must be obtained. The signal 
can be transformed to the frequency domain by Fast Fourier 
Transform (FFT).

4- Evaluation of Neural Network Training Results
As previously explained, 23 features are extracted from 

each signal, resulting in 46 numerical values recorded for each 
data point. Therefore, the input data dimensions for the MLP 
and SVM neural networks are 125 x 46, representing 125 
data points out of the total 156 (considered as training data). 
Additionally, for CNN models with Inception and AlexNet 
architectures, the input data is reshaped into a 2D format to 
enable analysis with 2D convolutional tools. Consequently, 
the last feature is omitted, and the remaining 45 features are 
arranged as a 5 x 9 matrix, resulting in input dimensions of 
125 x 5 x 9 for the CNN network.

To assess the impact of signal noise reduction, since 
the variance of the system noise is unknown, trial and error 
method is used to set different values (0.25, 0.5, and 0.75) 
for the measurement noise covariance R. Therefore, the noise 
of desired signal is reduced in three modes, while a mode 

without noise reduction is also considered during feature 
extraction. Considering the influence of data division on the 
neural network training results, each classifier is trained in 
five different data divisions, and the mean value of the results 
is shown in table 1. The results indicate that the AlexNet 
network performs better than the others

To compare the effect of noise reduction achieved by the 
Kalman filter, the mean and variance of the accuracy for all 
validation data are calculated for each noise reduction mode 
in Table 2. It is observed that the best accuracy for evaluation 
data is obtained when the measurement noise covariance R is 
set to 0.5. Consequently, the accuracy is improved compared 
to the mode without noise reduction. The accuracy results for 
validation data show less variation when the measurement 
noise covariance is set to  0.75R = . Finally, based on tables 
1 and 2, it can be concluded that the AlexNet neural network 
yields the best results in reducing Kalman filter noise with an 
R-value of 0.5.

5- Conclusions
The objective of this study was to examine the influence 

of noise reduction through the utilization of the Kalman 
filter on fault detection in the rotary machine. The laboratory 
data underwent noise reduction using the Kalman filter in 
various modes. Subsequently, features were extracted from 
the signals. Various neural networks, including SVM, MLP, 
Inception, and AlexNet, were trained using these datasets.

In the investigation of signal noise reduction, the AlexNet 
network consistently outperformed other methods. The 
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Table 1. The mean of the validation data accuracy for 
each classifier for each Kalman noise reduction mode

 

arranged as a 5 x 9 matrix, resulting in input dimensions 
of 125 x 5 x 9 for the CNN network. 

To assess the impact of signal noise reduction, since 
the variance of the system noise is unknown, trial and 
error method is used to set different values (0.25, 0.5, and 
0.75) for the measurement noise covariance R. Therefore, 
the noise of desired signal is reduced in three modes, 
while a mode without noise reduction is also considered 
during feature extraction. Considering the influence of 
data division on the neural network training results, each 
classifier is trained in five different data divisions, and 
the mean value of the results is shown in table 1. The 
results indicate that the AlexNet network performs better 
than the others 

Table 1: The mean of the validation data accuracy for each 
classifier for each Kalman noise reduction mode 

  0.25R    0.5R    0.75R   Not 
denoise 

Classifier Mean Mean Mean Mean 
SVM 0.935 0.942 0.922 0.910 
MLP 0.948 0.948 0.935 0.955 

Inception 0.942 0.948 0.935 0.948 
AlexNet 0.961 0.961 0.955 0.955 

To compare the effect of noise reduction achieved by 
the Kalman filter, the mean and variance of the accuracy 
for all validation data are calculated for each noise 
reduction mode in Table 2. It is observed that the best 
accuracy for evaluation data is obtained when the 
measurement noise covariance R is set to 0.5. 
Consequently, the accuracy is improved compared to the 
mode without noise reduction. The accuracy results for 
validation data show less variation when the 
measurement noise covariance is set to  0.75R  . 
Finally, based on tables 1 and 2, it can be concluded that 
the AlexNet neural network yields the best results in 
reducing Kalman filter noise with an R-value of 0.5. 

Table 2: The mean and variance of the accuracy of the 
validation data for all classifiers for each Kalman noise 

reduction mode 
Noise reduction mode Mean Variance 

 0.25R   0.947 0.0012 
 0.5R   0.95 0.0014 

 0.75R   0.937 0.009 
Without Noise reduction 0.942 0.0017 

5. Conclusions 

The objective of this study was to examine the 
influence of noise reduction through the utilization of the 
Kalman filter on fault detection in the rotary machine. 
The laboratory data underwent noise reduction using the 
Kalman filter in various modes. Subsequently, features 
were extracted from the signals. Various neural 

networks, including SVM, MLP, Inception, and AlexNet, 
were trained using these datasets. 

In the investigation of signal noise reduction, the 
AlexNet network consistently outperformed other 
methods. The best accuracy results were obtained with 
the measurement noise covariance  0.5R  . The 
AlexNet network achieved an accuracy of 96.1% with 

 0.5R  . Comparing the average results for different 
noise reduction modes across all classifiers, an accuracy 
of 95% was achieved with a measurement noise 
covariance of  0.5R  , which showed improvement 
compared to the mode without noise reduction. 

Future work could involve optimizing the covariance 
values of Q and R in the Kalman filter for signal noise 
reduction. Since the noise covariance of the recorded 
signals is unknown, these values can be determined 
through optimization methods to further enhance the 
performance of the system. 
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best accuracy results were obtained with the measurement 
noise covariance  0.5R = . The AlexNet network achieved 
an accuracy of 96.1% with  0.5R = . Comparing the 
average results for different noise reduction modes across 
all classifiers, an accuracy of 95% was achieved with a 
measurement noise covariance of  0.5R = , which showed 
improvement compared to the mode without noise reduction.

Future work could involve optimizing the covariance 
values of Q and R in the Kalman filter for signal noise 
reduction. Since the noise covariance of the recorded 
signals is unknown, these values can be determined through 
optimization methods to further enhance the performance of 
the system.
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