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ABSTRACT: This paper studies the autonomous vehicle leader following and collision avoidance 
problem. In this paper, like as a real vehicle, geometric dimensions, mass, and moment of inertia are 
considered for the vehicle; steering-wheel and driving-wheel torques are the two control inputs. The 
nonlinear dynamics equation of the vehicle is derived. At first, an algorithm is proposed for changing the 
direction of the vehicle to follow the leader, then the suitable path for multiple obstacle avoidance and 
leader following is proposed, and then a nonlinear model predictive controller (MPC) is used to follow 
the reference trajectory. The desired trajectory is designed according to the elastic band method which 
is a powerful method for obstacle avoidance and leader following. The performances of the closed-loop 
system are illustrated through simulations. During the simulation, the vehicle first changes its direction 
and then follows the leader without colliding with obstacles. Although the vehicle is inertial and non-
holonomic in behavior, the simulations show that the two path planning methods with MPC scheme 
work well. For future works, the authors aim to solve the problem with moving obstacles.
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1- Introduction
In recent years control of autonomous vehicles has gained 

extra attention [1, 2]. Leader following is an important task in 
robot control. To prevent the vehicle from colliding with an 
obstacle, a collision avoidance algorithm must be proposed.

Currently, because of the high potential of MPC, it is used 
in the automotive industry. A survey of MPC development 
in automotive applications was carried out [3]. In [4], a new 
trajectory planning based on an elastic band is proposed, 
which is combined with driving intention for vehicle obstacle 
avoidance. In [5, 6] methods have been proposed to pass two-
wheeled robots through obstacles, but four-wheeled vehicles 
are far more difficult to control than two-wheeled robots. 
The issue of autonomous vehicles passing a single obstacle 
has been discussed a lot (as in [7, 8]), but investigating 
the movement of autonomous vehicles through several 
obstacles requires more research. limited data about multiple 
obstacle avoidance and leader following is available in the 
literature. But in this paper, the issue of following a leader 
in a two-dimensional environment that requires more general 
maneuvers by the vehicle is investigated.

The most important contributions of this paper are:
•Two algorithms will be proposed, depending on the 

environmental conditions, the vehicle will use these two 
algorithms so that it can even move backward if necessary.

•In addition to path planning, a new trajectory planning 
technique will be proposed.

•The goal is to reduce the number of optimization decision 
variables in the trajectory planning to make optimization 
easier.

•The proposed trajectory planning and control methods 
are flexible against the number of obstacles.

2- Control problem statement
The autonomous vehicle is shown in Figure 1, and its 

mass and moment of inertia are considered. By determining 
state variables:
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the state space equations are [1]  

(2) 
 ,X f X τ  

   1 2 8 1 2,T Tx x x   X τ 

where,θ is the body yaw angle, is the steering 
angle, v is the front wheel speed, 1F  is robot driving 

force, and control inputs are chosen as 1   and 

1 2F  . 

In Figure 1, a leader is shown with a position 
,L Lx y  to be followed by a vehicle despite some 

obstacles. The desired trajectory is shown as small 
points. ,d dx y  shows the position of each point on the 
trajectory. The desired trajectory will be achieved by an 
optimization problem. 

 
Fig. 1. Optimal trajectory for leader following and obstacle 

avoidance. 
First, 

1 2, , ... ,
dnd d d   D  is defined as decision 

variables in the optimization problem. The aim is to find 
the best vector D  for leader following and obstacle 
avoidance. The proposed cost function that should be 
minimized to give the optimal trajectory is 
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where the penalty function ,i jJ  is for obstacle 

collision avoidance. Finally, the following optimization 
problem gives us the optimal trajectory 

(4) minoptimal TrajJ
D

D 
Figure 2 shows the robot direction care  relative to 

the direction of the leader relative position Le . And we 
have 

(5) 1cos ( . ).car L  e e  

 
Fig. 2. The vehicle direction relative to the direction of the 

leader’s relative position. 
According to the value of  , two special control 

algorithms are employed which are described here. 
Control logic for 0  : In this case (e.g., 0

0 80  ), 
before following the leader, the robot’s direction should 

 (1)
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where,θ is the body yaw angle,Φ is the steering angle, 
v is the front wheel speed, 1F  is robot driving force, and 
control inputs are chosen as 1τΦ =  and 1 2F τ= .

In Figure 1, a leader is shown with a position ,L Lx y  to 
be followed by a vehicle despite some obstacles. The desired 
trajectory is shown as small points. ,d dx y  shows the position 
of each point on the trajectory. The desired trajectory will be 
achieved by an optimization problem.

First, 
1 2, , ... ,

dnD d d d =    is defined as decision variables 
in the optimization problem. The aim is to find the best 
vector D  for leader following and obstacle avoidance. The 
proposed cost function that should be minimized to give the 
optimal trajectory is
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1. Introduction 

In recent years control of autonomous vehicles has 
gained extra attention [1, 2]. Leader following is an 
important task in robot control. To prevent the vehicle 
from colliding with an obstacle, a collision avoidance 
algorithm must be proposed. 

Currently, because of the high potential of MPC, it 
is used in the automotive industry. A survey of MPC 
development in automotive applications was carried out 
[3]. In [4], a new trajectory planning based on an elastic 
band is proposed, which is combined with driving 
intention for vehicle obstacle avoidance. In [5, 6] 
methods have been proposed to pass two-wheeled 
robots through obstacles, but four-wheeled vehicles are 
far more difficult to control than two-wheeled robots. 
The issue of autonomous vehicles passing a single 
obstacle has been discussed a lot (as in [7, 8]), but 
investigating the movement of autonomous vehicles 
through several obstacles requires more research. 
limited data about multiple obstacle avoidance and 
leader following is available in the literature. But in this 
paper, the issue of following a leader in a two-
dimensional environment that requires more general 
maneuvers by the vehicle is investigated. 

The most important contributions of this paper are: 
•Two algorithms will be proposed, depending on the 
environmental conditions, the vehicle will use these two 
algorithms so that it can even move backward if 
necessary. 
•In addition to path planning, a new trajectory planning 
technique will be proposed. 
•The goal is to reduce the number of optimization 
decision variables in the trajectory planning to make 
optimization easier. 
•The proposed trajectory planning and control methods 
are flexible against the number of obstacles. 

2. Control problem statement 

The autonomous vehicle is shown in Figure 1, and its 
mass and moment of inertia are considered. By 
determining state variables: 
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where,θ is the body yaw angle, is the steering 
angle, v is the front wheel speed, 1F  is robot driving 

force, and control inputs are chosen as 1   and 

1 2F  . 

In Figure 1, a leader is shown with a position 
,L Lx y  to be followed by a vehicle despite some 

obstacles. The desired trajectory is shown as small 
points. ,d dx y  shows the position of each point on the 
trajectory. The desired trajectory will be achieved by an 
optimization problem. 

 
Fig. 1. Optimal trajectory for leader following and obstacle 
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where the penalty function ,i jJ  is for obstacle 

collision avoidance. Finally, the following optimization 
problem gives us the optimal trajectory 
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Fig. 2. The vehicle direction relative to the direction of the 

leader’s relative position. 
According to the value of  , two special control 

algorithms are employed which are described here. 
Control logic for 0  : In this case (e.g., 0

0 80  ), 
before following the leader, the robot’s direction should 

Fig. 1. Optimal trajectory for leader following and 
obstacle avoidance.

2 
 

 

1. Introduction 

In recent years control of autonomous vehicles has 
gained extra attention [1, 2]. Leader following is an 
important task in robot control. To prevent the vehicle 
from colliding with an obstacle, a collision avoidance 
algorithm must be proposed. 

Currently, because of the high potential of MPC, it 
is used in the automotive industry. A survey of MPC 
development in automotive applications was carried out 
[3]. In [4], a new trajectory planning based on an elastic 
band is proposed, which is combined with driving 
intention for vehicle obstacle avoidance. In [5, 6] 
methods have been proposed to pass two-wheeled 
robots through obstacles, but four-wheeled vehicles are 
far more difficult to control than two-wheeled robots. 
The issue of autonomous vehicles passing a single 
obstacle has been discussed a lot (as in [7, 8]), but 
investigating the movement of autonomous vehicles 
through several obstacles requires more research. 
limited data about multiple obstacle avoidance and 
leader following is available in the literature. But in this 
paper, the issue of following a leader in a two-
dimensional environment that requires more general 
maneuvers by the vehicle is investigated. 

The most important contributions of this paper are: 
•Two algorithms will be proposed, depending on the 
environmental conditions, the vehicle will use these two 
algorithms so that it can even move backward if 
necessary. 
•In addition to path planning, a new trajectory planning 
technique will be proposed. 
•The goal is to reduce the number of optimization 
decision variables in the trajectory planning to make 
optimization easier. 
•The proposed trajectory planning and control methods 
are flexible against the number of obstacles. 

2. Control problem statement 

The autonomous vehicle is shown in Figure 1, and its 
mass and moment of inertia are considered. By 
determining state variables: 

(1) 1 2 3 4

5 6 7 8

, , , ,
, , , .

c c c cx x x x x y x y
x x x v x 

   

   
 

the state space equations are [1]  

(2) 
 ,X f X τ  

   1 2 8 1 2,T Tx x x   X τ 

where,θ is the body yaw angle, is the steering 
angle, v is the front wheel speed, 1F  is robot driving 

force, and control inputs are chosen as 1   and 

1 2F  . 

In Figure 1, a leader is shown with a position 
,L Lx y  to be followed by a vehicle despite some 

obstacles. The desired trajectory is shown as small 
points. ,d dx y  shows the position of each point on the 
trajectory. The desired trajectory will be achieved by an 
optimization problem. 

 
Fig. 1. Optimal trajectory for leader following and obstacle 

avoidance. 
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where the penalty function ,i jJ  is for obstacle 

collision avoidance. Finally, the following optimization 
problem gives us the optimal trajectory 

(4) minoptimal TrajJ
D

D 
Figure 2 shows the robot direction care  relative to 

the direction of the leader relative position Le . And we 
have 

(5) 1cos ( . ).car L  e e  

 
Fig. 2. The vehicle direction relative to the direction of the 

leader’s relative position. 
According to the value of  , two special control 

algorithms are employed which are described here. 
Control logic for 0  : In this case (e.g., 0

0 80  ), 
before following the leader, the robot’s direction should 

Fig. 2. The vehicle direction relative to the direction of 
the leader’s relative position.
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leader following and obstacle avoidance.

4- Conclusions
In addition to the dynamics model, steering limitation, 

actuator saturation, and nonholonomic constraints make the 
control problem difficult. For changing the direction of the 
robot to follow the leader, an MPC-based control algorithm 
is proposed. The simulation results show that the direction-
changing algorithm can be used in practice. A new trajectory 
planning method is proposed for leader following and to make 
sure that the collision is avoided. The proposed method first 
used trajectory planning and then used an MPC controller to 
follow the reference trajectory. Although physical constraints 
such as actuator saturation exist, the closed-loop system has 
suitable performance, and leader following with obstacle 
avoidance is well done.
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be placed in a suitable direction to follow the leader 
easily. The cost function to be minimized is as follows 
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Control logic for 0  : In this case, the direction 
of the robot is suitable for following the leader. The 
proposed cost function for this case is as follows 
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where, ,d iV  is the desired velocity vector obtained 

from the trajectory planning. 
Finally, the following optimization problem must be 

solved to obtain optimal control inputs: 

(8) minoptimal cJ


τ 
Subject to 

(9) ( 1) ( ( ), ) ( )i i dt i  X f X τ X  

1 1,max 2 2,max max, , .       
where, 1,max and 2,max  are the maximum torques 

and max  is the maximum steering angle. 
3. Results and Discussion 

In this section, a leader with initial position [0 0] and 
velocity [3,0]m/s are considered. In Figure 3, the 
trajectory of the autonomous vehicle, which is moving 
among the three obstacles, is shown. The vehicle tracks 
the virtual leader by using the proposed trajectory 
planning and NMPC scheme. In the beginning, the first 
control logic is activated to change the direction of the 
vehicle in a suitable direction. After changing the 
vehicle direction, the second control law is activated for 
leader following and obstacle avoidance. 

 
Fig. 3. The trajectory of the autonomous vehicle moving 

among the multiple obstacles. 

 
Fig. 4. The vehicle’s velocity time response. 
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In addition to the dynamics model, steering 
limitation, actuator saturation, and nonholonomic 
constraints make the control problem difficult. For 
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an MPC-based control algorithm is proposed. The 
simulation results show that the direction-changing 
algorithm can be used in practice. A new trajectory 
planning method is proposed for leader following and to 
make sure that the collision is avoided. The proposed 
method first used trajectory planning and then used an 
MPC controller to follow the reference trajectory. 
Although physical constraints such as actuator 
saturation exist, the closed-loop system has suitable 
performance, and leader following with obstacle 
avoidance is well done. 
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Control logic for 0  : In this case, the direction 
of the robot is suitable for following the leader. The 
proposed cost function for this case is as follows 
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where, ,d iV  is the desired velocity vector obtained 

from the trajectory planning. 
Finally, the following optimization problem must be 

solved to obtain optimal control inputs: 
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