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ABSTRACT: Aeroelastic instability in blades is one of the most important sources of instability in 
helicopter rotors, and the most critical of these instabilities is flutter. In this paper, in order to investigate 
the blade flutter and its relationship with the rotor structural parameters, using the Hamilton’s principle 
and considering the Euler-Bernoulli beam theory, the coupled nonlinear partial differential equations 
governing the rotating elastic blade of a helicopter in the hover flight mode are extracted and converted 
into a set of ODEs by applying Galerkin method. Then the obtained equations for small perturbations are 
linearized around the steady state conditions. assuming the harmonic response, the natural frequencies 
of the blade in three motion axes are calculated and the relationship between the natural frequency and 
flutter frequency of the blade with structural and aerodynamic parameters are shown. Using numerical 
simulation, the results for two types of soft and stiff blades with given characteristics in terms of different 
parameters such as blade twist angle, pre-cone angle and rotation speed of rotor for the first mode 
shape are extracted. Finally, the effect of each of the mentioned parameters on the flutter frequency and 
also, the blade stability region is analyzed. It is shown that by increasing the blade stiffness, the flutter 
frequency will increase and the system will be stable.
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1- Introduction
The flutter phenomenon is the most dangerous type 

of instability in the helicopter rotor and occurs in various 
reasons. Hodges and Ormiston [1] investigated the stability of 
elastic flap bending, lead-lag bending, and torsion of uniform 
and untwisted cantilever rotor blades with variable structural 
coupling in hover flight mode. Pardo et al. [2] have presented 
the development mathematical modeling and analysis of the 
natural frequencies and mode shapes of coupled flap-lag-
torsion of non-uniform rotor blades based on the Lagrange 
equations of motion. Kaya and Ozdemir [3] analyzed flutter 
stability of a uniform hingeless rotor blade in hover with 
structural coupling and demonstrated the effects of pitch angle 
and blade rotation speed. analyzing the aeroelastic stability of 
the curved composite hingeless rotor blade in the hover flight 
mode has been investigated by Amoozgar and Shahverdi [4]. 
Sarker and Chakravarty [5] have investigated of the coupled, 
steady-state dynamic response of the hingeless helicopter 
rotor blade at forward flight.

In this paper, the coupled nonlinear partial differential 
equations of the rotating elastic blade of a helicopter in the 
hover flight mode are extracted using the Hamilton’s principle 
and considering the blade as a Euler-Bernoulli beam and 
converted into a set of ODEs by applying Galerkin method. 
the obtained equations are linearized around the steady state 

conditions for small perturbations and the flutter frequencies 
of the blade are analyzed. 

2- Equations of motion
The coordinate system of an untwisted blade before and 

after deflections is considered as follows:
by applying the Galerkin method to the nonlinear variable 

coefficient equations and linearizing them around small 
perturbations, the governing equations of the blade in the 
dimensionless form are as follows [1]:
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Fig. 1. Coordinate system of rotating helicopter blade cross 
section before and after deformation [1, 6] 
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In order to investigating of the flutter, the response is 
assumed to be harmonic and so from equations (1) to 
(3) it can be written as follows: 

     2 0M i D K                                     (4)     

M, D, K are mass, damping and stiffness matrices. 
 
3. Results and Discussion 

 (1)
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M, D, K are mass, damping and stiffness matrices.

3- Results and Discussion
flutter determinant variations with frequency and 

dimensionless flutter frequency ( fω ) for a blade with given 
parameters [1] are shown in “figure 2”. 

As shown in “Figure 2”, for a stiff blade, the  flutter 
frequency (intersection of imaginary part with the zero axis) 
is about 1.57 and since the imaginary part intersects the zero 
axis in the negative region of the real part, the system will 
stable and the stability region is placed after the frequency 
point of 1.55 and also, for the flexible blade, the flutter 
frequency is about 0.82 and the stability region is placed 
after 0.826. it can be concluded that with increasing of the 
blade stiffness, the flutter occurred later and the system will 
be stable.

 the flutter determinant variations with blade rotation 
speed, pitch angleθ  and precone angle pcβ are shown in 
“Figure 3” and “Figure 4”.

As it can be seen from “Figure 3,4” with increasing of 
the rotation speed, the flutter frequency decreases. as well 
as with increasing of the pitch angle, the flutter frequency 
will increases and increasing the pre-cone angle decreses the 
flutter frequency slightly.

4- Conclusions
1- By increasing the stiffness of the blade, the flutter 

frequency increases and the flutter occurs later and since the 
flutter frequency is placed in the negative region of the real 
values, the system will be stable.

2- By increasing the rotation speed of the rotor, while the 
flutter frequency decreases, the system is stable.
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dimensionless flutter frequency ( f ) for a blade with 
given parameters [1] are shown in “figure 2”.  

 

 
Fig. 2. flutter determinant Vs. frequency for 100 rad

s   

and 8 , 5pc    

As shown in “Figure 2”, for a stiff blade, the flutter 
frequency (intersection of imaginary part with the zero 
axis) is about 1.57 and since the imaginary part 
intersects the zero axis in the negative region of the real 
part, the system will stable and the stability region is 
placed after the frequency point of 1.55 and also, for the 
flexible blade, the flutter frequency is about 0.82 and 
the stability region is placed after 0.826. it can be 
concluded that with increasing of the blade stiffness, the 
flutter occurred later and the system will be stable. 

 the flutter determinant variations with blade rotation 
speed, pitch angle  and precone angle pc are shown 

in “Figure 3” and “Figure 4”. 
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As it can be seen from “Figure 3,4” with increasing of 
the rotation speed, the flutter frequency decreases. as 
well as with increasing of the pitch angle, the flutter 
frequency will increases and increasing the pre-cone 
angle decreses the flutter frequency slightly. 
 
4. Conclusions 
1- By increasing the stiffness of the blade, the flutter 
frequency increases and the flutter occurs later and 
since the flutter frequency is placed in the negative 
region of the real values, the system will be stable. 
2- By increasing the rotation speed of the rotor, while 
the flutter frequency decreases, the system is stable. 
3- As the pre-cone angle increases, the flutter frequency 
is slightly reduced and with increasing of pitch angle, 
the flutter frequency increases. 
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3- As the pre-cone angle increases, the flutter frequency is 
slightly reduced and with increasing of pitch angle, the flutter 
frequency increases.
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