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ABSTRACT  

Flexure joints are one of the most widely used and 

crucial elements in the design of precision 

mechanisms. Owing to their monolithic and elastic 

structure, these joints facilitate highly precise 

movements. In this study, we present a kinetoelastic 

model for designing various types of flexure joints 

with single and multiple degrees of freedom. To 

reduce computational costs, two beneficial 

approaches for defining the objective function and 

constraints are presented, based solely on the strain 

energy criterion and predetermined displacements. 

The resulting self-adjoint optimization problem 

exhibits computational efficiency and improved 

convergence. The topology optimization problem 

utilizes the Finite Element Method and the Solid 

Isotropic Material with Penalization model, 

employing the Method of Moving Asymptotes to solve 

and identify the optimal topology. A comprehensive 

mathematical framework, including the relevant two-

dimensional boundary conditions and sensitivity 

analysis, is meticulously developed and extensively 

examined. For this purpose, MATLAB code is 

developed for designing two-dimensional flexure 

joints with single and multiple degrees of freedom. 

Finally, the results obtained from the comparison of 

two optimization approaches presented in this study 

are discussed. In these joints, the stiffness ratio of the 

structure has increased significantly, up to 208 times, 

indicating the practicality and effectiveness of this 

method in the topology optimization of flexure joints.  

KEYWORDS  

Flexure joints, topology optimization, strain 

energy, the Method of Moving Asymptotes, 

predetermined displacements 

  

 Introduction 
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Topology optimization is a branch of structural 

optimization that focuses on determining the optimal 

structure by adjusting the number, location, and shape of 

voids, and the way members of the structure interact. It's 

used in continuous structural problems [1] and designing 

flexible mechanisms like flexure joints, critical in 

engineering and robotics [2]. 

Flexure joints allow relative motion via elastic 

deformation, needing minimal maintenance due to their 

monolithic build and lack of internal friction [3]. The 

design of flexure joints must ensure that these 

mechanisms create specific relative motions between 

rigid links while maintaining desirable stiffness. Degrees 

of freedom enable desired movement, whereas 

constraints restrict it [4]. 

This research applies topology optimization to 

enhance flexure joint performance, emphasizing stiffness 

optimization, motion range, stress control, fatigue 

resistance, and manufacturing sensitivity. It focuses on 

joints with small displacements, using linear elasticity for 

structural relationships. 

 Methodology 

A flexure joint within a design domain 𝛺 made of 

linear elastic isotropic material is considered. The design 

domain is represented as in Figure 1 and includes a white 

optimization region and blue rigid links on the left and 

right. The contact areas between the flexure joint and the 

rigid links are called interfaces. Circles indicate common 

nodes where predetermined displacements apply various 

motion patterns to the joint. 

 

Figure 1. The design domain for topology optimization 

of flexure joints in a 2D space 

This research uses predetermined displacements as 

boundary conditions, unlike previous studies that used 

fixed loads. In a 2D space, the motion patterns 

 , , x y zt t r  include two translational (x and y axes) 

and one rotational (z-axis) movements, as shown in 

Figure 2. Subsets   and \  represent 

constrained and free motion patterns, respectively. Table 
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1 details the numbering and nodal displacement values 

for the three defined motion patterns. 

 

 

 

Figure 2. Three independent motion patterns used for 

the design of 2D flexure joints. (a) Relative translational 

motion along the x-axis (tx), (b) Relative translational 

motion along the y-axis (ty), and (c) Rotation about the 

z-axis (rz). 

Table 1. predetermined displacement values 

Motion 

pattern 
Number u v 

xt  
1 1 0 

yt  
2 0 1 

zr  
3 1 
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Two methods for formulating the topology 

optimization problem are presented below. The first 

approach formulates the topology optimization problem 

by maximizing the strain energy function for constrained 

motion patterns while assigning specific values to the 

strain energies from free motion patterns. This function's 

negative is minimized for standard optimization. 

In the second approach, a function is derived from 

strain energies due to applied motion patterns for both 

constrained and free degrees of freedom. The objective is 

to maximize constrained motion pattern energies and 

minimize free motion pattern energies simultaneously, 

while maintaining a specified minimum ratio between the 

energies of constrained and free motion patterns. Like the 

first approach, the optimization problem is formulated in 

a standard manner rather than maximizing constrained 

motion pattern energies directly. The formulation of the 

proposed problem is as follows: 
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The dimensionless objective function f depends on 

strain energies Ui and, Uj with emin indicating the 

minimum relative stiffness ratio between constrained and 

free degrees of freedom's strain energies. V denotes the 

permissible material volume. 

Topology optimization involves calculating 

successive structural responses (objective function and 

constraints) and analyzing their sensitivity to design 

variables. In this research, the optimization problem aims 

to minimize negative strain energy in constrained degrees 

of freedom. Consequently, the sensitivity analysis of the 

objective function in this optimization problem is 

expressed as follows: 
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 Results and Discussion  

In this section, an example of a rotational flexure joint 

along with its validation is presented. A rotational flexure 

joint can only rotate about the z-axis and has no 

translational motion along the x and y axes. Sets of free 

and constrained motion patterns, denoted as   zr  and 

 , x yt t , respectively, are considered. The minimum 

relative stiffness of the constrained degrees of freedom 

relative to the free degree of freedom is considered to be 

50 min 50)( e . The optimized topology depicted in 

Figure 3(a) represents the output of the optimization 

problem, and for a better comparison, the topology 

generated by Koppen [5] is presented in Figure 3(b). 
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                                     (a)                (b) 

Figure 3. Optimized flexure joints capable of rotation 

about the z-axis resulting from (a) current research and 

(b) the design proposed by [6] 

For the validation of the quantitative research 

conducted, the stored strain energy in two rotational 

hinge joints depicted in Figures 3(a) and 3(b) is 

calculated under the application of translational 

movement patterns xt  and 
yt  with identical inputs. 

Under these uniform conditions, the hinge joint derived 

from the approach presented in this study preserves 

10.83% and 1.85% more strain energy for the constraint 

degrees yt  and xt , respectively, compared to the hinge 

joint proposed by [6]. Convergence plot illustrating yt

comparison is shown in Figure 4. The output results of 

these two optimization problems are presented in Table 

2. 

 

Figure 4. Comparison of convergence plot of strain 

energy yt  values for the rotational joints presented in 

Figures 3(a) and 3(b) 

Table 2. Strain energy values stored in rotational 

joints of Figures 3(a) and 3(b) 

Optimized 

flexure joint 

 (N.mm) 

xt  yt  
zr  

Figure 3(a) 110 39.9 0.851 

Figure 3(b) 108 36 0.851 
 

The validation confirmed the accuracy of finite 

element calculations and the optimization algorithm. A 

computer program was then developed to identify more 

complex rotational flexure joints. These optimized 

topologies reduce material at their centers, enhancing 

resistance to torsional loads and enabling rotational 

movement around their centers when fixed on one side 

and subjected to rotational force on the other. 

The optimization method proposed in this study, 

based on strain energy criteria, and has significant 

advantages. The first advantage is its self-adaptive 

nature, which increases the solution speed and reduces 

computational volume to the extent that it can be 

executed on a home computer. The second advantage is 

its capability to generate numerous optimal topologies, 

whereas previous methods only produced a single 

optimal topology. The third advantage lies in the use of a 

gradient-based optimization approach, which facilitates 

rapid convergence of the objective function and 

constraints, thereby reducing the time to achieve optimal 

topologies. 

 Conclusions 

This research establishes a comprehensive 

framework for the design of flexure joints, significantly 

simplifying the process by requiring minimal parameters 

and computational effort. Utilizing MATLAB and 

gradient-based methods, this framework effectively 

optimizes both single and multi-degree-of-freedom joints 

within the linear elastic range. Notably, some designs 

achieved a stiffness-to-weight ratio of up to 208 times. 

The framework also has potential applications in three-

dimensional and nonlinear elastic problems, and can 

incorporate constraints such as stress and fatigue, making 

it highly practical and versatile for future advancements 

in the field. 
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