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ABSTRACT 

Previous investigations indicate that using the open crack model for vibration analysis of cracked 

structures may lead to incorrect results. Such a simple model can only be used as a rough approximation for 

predicting the dynamic behavior of the cracked structures. Therefore, in order to predict the nonlinear 

dynamic behaviour of the structures with a fatigue crack more accurately, one has to consider the 

nonlinearity of the crack. In this paper, the nonlinear behavior of the free vibration of a cantilever beam with 

a Fatigue Crack is investigated. To this end, first, the lateral vibration of the cracked beam in its first mode is 

modeled as an SDOF system with an equivalent mass and stiffness. Then, a new model is introduced for the 

bilinear stiffness of the beam with a breathing crack. Using this model, the governing differential equation of 

motion is converted to the standard form that can be analyzed by Lindstedt- Poincare’s method. The results 

show that the response is composed of two parts. The main part is the response of a system with the mean 

equivalent stiffness of the systems corresponding to the closed crack and the open crack cases. The second 

part is composed of the first and second order correction terms, which reflects the effect of opening and 

closing of the crack on the vibration response. In fact, the correction terms consist of the higher harmonic 

components of the spectrum.  The results have been validated by the experimental tests. 
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1- INTRODUCTION 

In the most studies in the area of fault detection based 

on the vibration analysis, the linear models are used. 

However, some researchers showed that the local 

stiffness at the crack location changes during the structure 

vibration. Therefore, the vibration behavior of the 

cracked structure cannot be predicted through using the 

linear models, properly. Elber [1] investigated the effect 

of opening/closing the crack on the vibration behavior of 

a cracked cantilever beam. Gudmundson [2] studied the 

crack closure effect on an edge-cracked beam. He found 

that the reduction in natural frequencies due to the closing 

crack is much smaller than the open crack. Friswell and 

Penny [3] have modeled the nonlinear behavior of a 

cantilever beam with a breathing crack at its first 

vibration mode by using an SDOF oscillator with a 

bilinear stiffness.  

Recently, Peng et al. [4] investigated the nonlinear 

behavior of a cracked beam using the concept of 

nonlinear frequency response function. They showed that 

the response of the system has a high sensitivity to the 

fatigue crack when it is excited at a proper frequency. 

In the present study, by introducing a new bilinear 

stiffness model for a breathing crack, the lateral vibration 

of a cracked cantilever beam is investigated. The 

governing differential equation is analyzed by the 

Lindstedt Poincare’s method. The theoretical results are 

verified by the experiments. 

2- MODELING OF CRACKED CANTILEVER 

BEAM 

In this study, free vibration of a cantilever beam with 

a fatigue crack at first vibration mode is modeled as an 

SDOF system. The equivalent mass and the stiffness of 

the cracked beam are obtained. The bilinear stiffness is 

modeled as: 
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where openk  and closek  are the equivalent stiffness of 

system at the fully open and the fully closed states of the 

crack, respectively. The equivalent stiffness of the intact 

beam may be written as [2]: 
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where cC  is the compliance of the intact beam, E  is the 

Young modulus, I  is the cross section moment of inertia, 

and L  is the beam length. Clough and Penzien [5] 

suggested the first vibration mode of the cantilever beam 

as the following: 
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In the present study, in order to improve the model, 

instead of Eq. (3), the first vibration mode of the 

cantilever Euler-Bernoulli beam is used: 
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In which, at the first vibration mode, 875.1L . 

The equivalent stiffness of the beam with a fully open 

crack may be written as: 
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In the above equation, 
oC C ΔC   and ΔC  is the 

changes in compliance due to the crack. Dimarogonas 

and Paipetis [6] obtained ΔC  in terms of the crack depth, 

a , as: 
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where w  and b  are the width and the height of the beam 

cross sectional area, respectively. J is the strain energy 

release rate, ν  is the Poisson ratio, and φ  is a function 

of the relative crack depth and is: 
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According to above explanations, the governing 

equation of motion for the cracked beam which is 

modeled as an SDOF system may be expressed as: 

(8) 0)(  uukum   

where u is the displacement of the beam equivalent mass. 

3- NEW BILINEAR MODEL OF THE CRACKED 

BEAM 

By defining the following parameters: 
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the new model for the bilinear equivalent stiffness is 

introduced as: 

(10) 








)1(

)1(





kk

kk

open

close  

Using Eqs. (9) and (10), one can express the 

equivalent stiffness as: 

 (11) ukkuuk )(  

By performing some mathematical manipulations, the 

governing equation of motion can be written as follows:   
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where 0ω is the linear natural frequency. 

4- ANALYZING THE EQUATION BY THE 

LINDSTEDT POINCARE’ METHOD 

Based on the Lindstedt Poincare’s method, the 

solution of equation (12) can be assumed as: 
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By defining τ ωt , substituting  Eq. (13) into Eq. (12), 

and equating the coefficients of the same powers of ε , 

the following equations are obtained: 
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Assuming pure displacement for an initial condition, the 

perturbation solution becomes: 
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Moreover, the natural frequency of the cracked beam is: 
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5- RESULTS AND DISCUSSION 

The geometrical and the mechanical properties of the 

cantilever beam containing a breathing crack are chosen 

as: L = 450 mm, w = 3.9 mm, b = 6.4 mm, E = 200 GPa 

and 

 ρ =7860 kg/m
3
. 

To validate the theoretical results, some experimental 

tests are performed on the cracked beam. To this end, a 

fatigue crack at a relative location of 0.8β   and a 

relative depth of 0.38α  , was created on the beam by a 

servohydraulic universal dynamic test machine 

(Zwick/Roell Amsler HA250). The dynamic response of 

the beam was captured using an accelerometer (B&K 

4507) and a signal analyzer (B&K 3109). 

Moreover, the perturbation solution is validated by the 

numerical technique (RK4). The results show that 

considering only one correction term in the perturbation 

solution, the response closely coincides with that obtained 

by the numerical technique. 

The theoretical results obtained through the Lindstedt 

Poincare’s method revealed that the vibration response of 

the cracked beam is influenced by the crack depth. In 

fact, for a given crack location, as the crack depth 

increases, the effect of the correction term, the second 

term on the right hand side of Eq. (13),  which is 

reflecting the influence of the crack on the vibration 

response, becomes considerable (Fig. 1). 

 
Fig. 1 The contribution of the correction term in vibration 

response of the cracked beam for the relative crack 

location of 0.6β   and the crack relative depth of 

(a) 0.3α  , (b) 0.5α   and 0.7α   

6- CONCLUSION   

In this research, a new bilinear stiffness model is 

proposed for a beam with a fatigue crack.  The governing 

equation of motion is solved by the Lindstedt Poincare’s 

method. The main results are: 

- The relationship among the harmonic components and 

the crack parameters of the beam with a fatigue crack is 

appeared explicitly in the vibration response which is 

obtained through the perturbation method. 

- Although the cracked beam vibrates mainly at its 

fundamental frequency, weak harmonic components are 

also present in the response due to the nonlinearity of the 

crack. Such a behavior is observed from the experiments. 

- Comparing the cracked beam fundamental frequency 

obtained through using the two crack models, i.e. the 

presented model for the breathing crack and the open 

crack model, and that obtained by the experiment shows 

that the one obtained through applying the presented 

model are more accurate than the open crack model.   
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