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Vibration analysis of post-buckled beam is investigated in this study. Governing nonlinear equations of 
motion for the post-buckled state are derived by neglecting terms containing the damping effects, shear 
deformation and rotary inertia. The beam is assumed to have some geometrical imperfections, which are 
represented in terms of the first modal shape of the intact beam with different amplitudes. Considering 
the small amplitude vibrations around the post-buckled equilibrium configuration, the solution consists 
of static and dynamic parts, both leading to nonlinear differential equations. The differential quadrature 
method has been used to solve the problem. First, it is applied to the equilibrium equations, leading to a 
nonlinear algebraic system of equations that is solved utilizing an arc length strategy. Next, the differential 
quadrature is applied to the linearized dynamic differential equations of motion and their corresponding 
boundary and continuity conditions. Upon solution of the resulting eigenvalue problem, the natural 
frequencies and mode shapes of the beam are extracted. The investigation includes several numerical as 
well as experimental case studies on the post-buckled simply supported and clamped-clamped beams. 
The results show that the applied compressive load as well as the geometric imperfection largely affect 
the modal shapes and natural frequencies of the beam. Moreover, the study demonstrates the excellent 
accuracy and efficiency that can be obtained by applying the differential quadrature method to treat 
vibration of the post-buckled beams.
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1- Introduction
The problem of vibration of an elastic beam around 
its post-buckled state has gained much attention 
recently. Nayfeh et al. [1] analyzed the vibrational 
mode shape of buckled beams using analytical and 
experimental methods. They used the static buckling 
mode shape and found an exact solution for natural 
frequency as well as vibrational mode shape of the 
beam. Neukirch et al. [2] studied the small amplitude 
in-plane vibrations of an elastic clamped-clamped 
rod around its post-buckled state using extensible and 
inextensible models, analytically and numerically. 
They found that while for some modes there are 
no qualitative changes in the mode frequencies, 
other frequencies experience rapid variations after 
the buckling threshold. This study investigates the 
vibrational behavior of a post-buckled elastic beam 
both numerically and experimentally.

2- Methodology 
Consider an elastic beam of length l, height h and 
width b subjected to an axial compressive force 
p at x = l. Neglecting the damping effects, shear 
deformation and rotary inertia, governing differential 
equations of motion for the beams’ post-buckled state 
can be presented by:

where s is the arc length of the deflection curve, 
u and w are the displacements along the x and y 
axes, respectively. In addition, θ is the rotation with 
respect to the x axis, θ0 is the initial rotation due 
to the geometric imperfection, and n, q and m are 
the axial and shear forces, and bending moment, 
respectively. The first two equations represent the 
strain components of the element, the third equation 
corresponds to the constitutive equation, and the last 
three represent the governing differential equations of 
the motion. A is the cross section and I is the second 
moment of inertia. 

Considering the small amplitude vibrations around 
the post-buckled equilibrium configuration, the 
solution can be written as the sum of the equilibrium 
and harmonic parts. In order to solve the vibration of 
the post-buckled beams, first the system of Eq. (1) are 
solved statically to determine the equilibrium shape. 
Next, the small vibrations around the post-buckled 
equilibrium are considered. Removing the nonlinear 
terms, the linear dynamic equations of motion can be 
obtained. 
The differential quadrature (DQ) method is utilized 
to solve both the nonlinear post-buckled equilibrium 
equations and linear dynamic equations of motion. 
The method states that the derivative of a function 
with respect to a space variable can be approximated 
by a weighted linear combination of function values 
at some intermediate points in the domain of that 
variable [3]. Application of the DQ method to the 
static post-buckled equations and their corresponding 
boundary conditions results in a system of nonlinear 
algebraic equations, which can be solved using an 
arc-length strategy. 
Determining the post-buckled equilibrium state of 
the beam, next their small vibration around this 
state is considered. Discretizing the system of linear 
dynamic equations of motion and their corresponding 
boundary conditions result in a system of linear 
eigenvalue equations. The solution of this eigenvalue 
problem by a standard eigensolver provides the 
natural frequencies and corresponding modal shapes 
of the post-buckled beam.

3- Results and Discussion
To verify the effectiveness of the presented approach, 
an experimental study is carried out on clamped-
clamped and simply supported beams made of 
polyvinylchloride (PVC). The beam considered here 
is 775 mm long, 20 mm width and 10 mm height. 
Modulus of elasticity, Poisson’s ratio, and density 
of the PVC beam are 3.7 Gpa, 0.4 and 1400 kg/m3, 
respectively. Different fixtures are used to represent 
the simply supported and clamped boundary 
conditions (see Fig. 1). Then, the load is applied to 
the beam to produce the state of postbuckling with 
certain amounts of end shortening. A data acquisition 
system is utilized to measure the lowest three natural 
frequencies of the intact beams.
The natural frequencies obtained by the proposed 
method as well as the FEM results are presented in 
Table 1. The commercial ANSYS finite element 
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software was used to model the problem. It used 500 
BEAM189 elements to model the beam.  

As can be seen from the table 1, the DQ results are 
in very good agreement with the FEM ones. The DQ 
results used only 17 points to model the beam. The 
experimental natural frequencies of the clamped-
clamped beam are compared with those of the DQ 
method in Table 2, showing good agreement.
The variation of the first four natural frequencies of a 
clamped-clamped beam in terms of the applied load 
is computed numerically and demonstrated in Fig. 
2. For clamped-clamped beams, the odd frequencies 
increase rapidly just after the buckling while the even 
modes experience some decrement after the buckling. 
Moreover, when the beam undergoes large deflection 
after the buckling, the second, third and fourth natural 
frequencies decrease as the applied compressive load 
increases due to overall stiffness drop caused by the 
negative geometric stiffness.
The fundamental frequency experiences a sharp growth 
immediately after the buckling load, and smoothly 
continues increasing with the increase in applied 
load. This is because the dynamic stretching-induced 
stiffness dominates the elastic bending stiffness, while 
for the other modes the bending stiffness is dominant. 

Therefore, the first natural frequency increases with 

the increase in applied load. Fig. 3 shows the variation 
of the first 13 natural frequencies of the simple 
supported beam in terms of the compressive load. As 
the applied load increases from zero to the buckling 
load, all the frequencies are reduced smoothly. The 
same conclusion can be made after buckling, except 
for the 1st and 11th modes. The fundamental frequency 
changes rapidly with the increase in applied load; 
where for a compressive load of 2Pcr, it exceeds the 
13th frequency. The first mode shape of the beam is the 
first symmetric stretching-bending mode, whereas the 

Figure 1. Experimental setup

Figure 2. The first four natural frequencies of 
clamped-clamped beam

Table 1. Natural frequencies of the post-buckled clamped-clamped beam 

P/Pcr=1.6P/Pcr=1.4P/Pcr=1.2Nat. 
Freq. 
(Hz)  Error

)%(FEMDQM Error
)%(FEMDQM Error

)%(FEMDQM

0.00065.42965.4290.08662.63762.6910.11459.22959.297ω1

0.40121.17121.0860.11426.55026.5190.02330.90530.898ω2

0.010113.380113.2610.047126.062126.0020.110146.998146.837ω3

0.11865.74065.8170.03970.43370.4060.21484.85484.673ω4

Table 2. Result of spherical vessel without 
temperature difference with different parameters

Nat.
Freq. (Hz)

P/Pcr=1.088, End-shortening=130 mm

DQM Experiment Error (%)

ω1 95.131 97.500 2.43

ω2 54.048 55.063 1.85

ω3 171.43 175.44 2.29
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next nine modes are the bending mode shapes. The 11th 
mode is the second antisymmetric stretching-bending 
mode shape. Since the dynamic stretching-induced 
stiffness dominates the elastic bending stiffness, for 
the 1st and 11th modes the natural frequencies increase 
with the increase in applied load.
4- Conclusions
The free vibration of a post-buckled elastic beam 
was investigated. The solution of the nonlinear 
differential equations of the beam consists of static 
and dynamic parts. The differential quadrature 
method along with an arc length strategy was used 
to solve the static part, while the same method 
was utilized to solve the linearized dynamic part. 
Several numerical as well as experimental case 
studies on the post-buckled simply supported 
and clamped-clamped beams were performed. 

The results show that the natural frequencies and the 
mode shapes of the beam can be predicted well by the 
presented method. The investigation also showed that 
the boundary conditions as well as the amount of the 
applied compressive load highly affect the dynamic 
response of the structure.
It is shown that for clamped-clamped beam, the odd 
frequencies increase rapidly just after the buckling 
while the even modes experience a smooth decrement 
after the buckling. Moreover, when the beam 
undergoes large deflection after the buckling, the 
second, third and fourth natural frequencies decrease 
as the applied compressive load increases, while 
the first frequency increases. The situation is totally 
different for the simply supported beams. All the first 
13 natural frequencies except the first and eleventh 
ones decrease as the applied load increases.
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Figure 3. The first 13 natural frequencies of simply 
supported beam


