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ABSTRACT: In this study, by an inverse method, which uses the Tikhonov regularization method, 
traction boundary conditions on surface of a hyper-elastic material are determined. Displacements at 
several points on the surface of the body are measured and used to find the unknown stress parameters 
on a part of the problem boundary. The inverse analysis is carried out for Mooney-Rivlin and Ogden 
isotropic models. An example for identification of boundary conditions on a boundary part of a two 
dimensional domain with a relatively complicated geometry is presented to show the effectiveness of the 
proposed method. Effects of different parameters are studied in this example. The results for both hyper-
elastic models show that the error of the solution decreases with increasing the number of measured 
data and decreasing the measurement error. Moreover, it is observed that the accuracy of the solution is 
decreased when the nonlinear behavior of the material is increased.
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1- Introduction
In some inverse problems, hyper-elastic material parameters 
are the unknowns of the problem. Czabanowski [1] by 
conducting some compression tests on elastomer samples 
and by using force-displacement data, obtained the unknown 
Mooney-Rivlin material parameters of the samples.
In some other inverse problems, boundary conditions are 
considered as the unknowns of the problem. Nakajima et 
al. [2] used ultrasonic measured displacement data and the 
boundary element method to obtain the unknown parameters 
of the boundary condition on the surface of the sample.
In this research, an inverse method for determining the 
boundary condition parameters of a hyper-elastic material 
with arbitrary shape is proposed. The Tikhonov regularization 
method is used in the inverse analysis.
 
2- Methodology, Discussion and Results
In hyper-elastic materials, stress-strain relationship is defined 
by strain energy density function in terms of the deformation 
gradient or strain tensors. Derivatives of the strain energy 
function with respect to strain give the stress components as 
follows: 

where S  is the second piola-Kirchoff stress tensor and ε is the 
Lagrangian strain tensor defined as follows:

C is the right Cauchy-green deformation tensor and is defined 
as follows:

where F is deformation gradient and is defined as follows:

where u is the displacement vector.
In general, strain energy density function can be expressed 
in terms of F. Therefore, ψ can be expressed in terms of C, 
i.e., ψ = ψ(C) and the Cauchy stress tensor (σ) is expressed 
as follows:

For an isotropic material, ψ is dependent on C through its 
invariants. These invariants are defined as follows:

For an isotropic material ψ is just dependent on I1, I2 and I3 
and Equation 5 is expanded as follows:
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Strain energy density function for Mooney-Rivlin hyper-
elastic model is defined as follows:

where, I1=J-2/3I1 and I2=J-4/3I2 and C10, C01 and D1 are material 
constants.
The strain energy density function for Ogden hyper-elastic 
model is defined as follows: 

where, λ1 , λ2 and λ3 are principle stretches and N, μi, αi and Di 
are material constants.
In the inverse problem to be analyzed here, the stress 
distribution in a part of the boundary is the unknown of the 
problem. The stress distribution is considered to be piecewise 
quadratic.
The vector of unknowns is expressed as follows:

Further, the vector of measured displacements at sampling 
points and the vector of displacements obtained from solving 
the direct problem using initial guesses are named as y and u, 
respectively. Based on the Tikhonov regularization method 
the cost function of a minimization problem is defined as 
follows:

where, μ is the regularization parameter. By minimizing S 
with respect to m the following relation is obtained:

where, X is the sensitivity matrix.
The unknown vector m can be obtained by an iterative 
method. Suppose that m and u are the unknown vector and 
displacement vector at current step (iteration), respectively. 
The displacement vector at the next step can be updated as 
follows:

By substituting Equation (15) in (14) and after some 
mathematical manipulations, the following equation is 
obtained:

Equation (16) is used in an iterative process.
The convergence rule for the iterative process is defined as 
follows:

In this research, in order to provide measurement data for 
an example, a direct problem with five known boundary 
condition parameters (σ1 to σ5) is solved. Some errors 
were added to the results obtained from the direct analysis 
to simulate the measurement errors. In the first case, the 
Mooney-Rivlin hyper-elastic model with material constants 
of 80Pa, 20Pa and 0 was employed. The loaded sample is 
shown in Figure 1.

The effect of the location of measurement points on the 
results was studied first. It was concluded that, when the 
measurement points were located on the edge with the 
unknown boundary condition, the error in the obtained results 
was less. The effect of the number of measurement points on 
the results was also studied. It was found that by increasing 
the number of measurement points the error in results and the 
number of iterations decrease. 
The effect of the magnitude of measurement errors on 
results was also studied. It was observed that an increase in 
measurement error increases the error in obtained constants 
and increases the number of iterations in the inverse analysis. 
By changing the material constants, the nonlinearity of the 
problem was increased and consequently the number of 
iterations and the error in the results increased too. 
The analyses were performed on Ogden hyper-elastic model 
as well and the results were consistent with those obtained for 
Mooney-Rivlin hyper-elastic model.

3- Conclusions
In this research, an inverse problem for hyper-    elastic 
materials with unknown boundary conditions was introduced. 
The unknown parameters were obtained through an inverse 
iterative analysis. It was observed that by increasing the 
number of measurement points the accuracy of the results 
is improved. The increase in the number of measurement 
points must provide useful information for the problem. In 
choosing the number and location of the measurement points 
one must note that, the quantity, which is being measured at 
the measurement points is sensitive enough with respect to 
the unknown parameters. Further, it was seen that increase in 
measurement error, increases the error in results enormously. 
If the nonlinearity of the problem is increased, even with 
small measurement errors, the results are obtained with a 
considerable error.
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Figure 1. Loaded Sample
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