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ABSTRACT: In this paper, based on the duality between the predictive control and general estimation 
problem, two new predictive filters, named generalized predictive filter and generalized predictive 
Kalman filter, are developed. The major advantage of the new filters over the existing predictive filters 
are that their structure are very simple and their application as a recursive filter is not complicated. Unlike 
the Kalman filter, these proposed predictive filters assume that process noise and model error are not 
equivalent and there are no limitations about the form of model error so that this model error can appear 
in a nonlinear form or even a colored noise. By minimizing a quadratic cost function consisting of a 
measurement residual term and a model error term respect to the process model error, the optimal model 
error is determined. Compensation of this model error in the time update state model provides accurate 
estimates even in the presence of dynamic uncertainty. Combination of Kalman filter and generalized 
predictive filter improves the performance and robustness of Karman filter. The validity of the suggested 
filters is illustrated by a numerical example and their performance and robustness are compared with 
those of KF and the fading Kalman filter.
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1- Introduction
In general, the predictive filters based on minimization of 
a cost function including both of the measurement residual 
term and the model error term with respect to the model 
error, estimate the optimal model error on line and use this 
estimation to correct the estimated states in each time step 
[1]. 
In this paper, based on concepts of the generalized predictive 
control (GPC) introduced in [2, 3], two new filters called 
the generalized predictive filter (GPF) and the generalized 
predictive Kalman filter (GPKF) for discrete-time linear 
systems are presented. GPF and GPKF have a prominent 
advantage over the predictive filters presented in [1, 4-7]. 
In fact, the existing predictive filters due to the use of 
Lie derivatives in their formulation have very complex 
mathematical algorithms. This complexity makes it difficult 
to understand the algorithm and makes the use of predictive 
filters be accompanied with great difficulties. This drawback 
seriously curtails their widespread utilization and causes their 
features to remain unexplored. Therefore, in order to provide 
some facilities available to engineers, it is necessary to propose 
an alternative and easy approach to achieve the predictive 
filter. This research overcomes this problem by introducing 
GPF and GPKF as two effective and facile PFs. The derivation 
of these new filters is very simple and implementing them as 
a recursive filter is very straightforward.

2- Development of Generalized Predictive Filters 
The state space and measurement equations of the discrete-
time linear system are:

(1)

( ) ( )

[ ]

1

1

1

1
1 1 1 1

1

1

1

ˆˆ ˆ

ˆ ˆ

-

0.9305 0 0.1107
0.

ˆ

0077 0.9802 0.01

ˆ ˆ

ˆ ˆˆ ˆ

ˆ ˆ

ˆˆ

73
0.0142 0 0.8

ˆ

95

w
k k k k k

k k k k

d
k k k k k

k k k

k x k k

T T
k k k k k k

k GPF k x k

d
k k k k k

k

k k

x F x G w

y H x v

x F x G d

y H x

y H x Vd

J y y R y y d Wd

d K y H x

x F x G d

x
δ

δ

+

+

+

−
+ + + +

+

− +
+

+

= +

= +

= +

=

= +

= − − +

=

= +

+
= + −



 



k

1

3 0.1

1
1
1

1 0 0
0 1 0

0.1        50 100 
0                .

0.9305 0 0.1107
0.0077 0.9802 0.0173
0.0142 0 0.8953 0.1

0.5 0
0 0.5
0 0

k

k

k

k k k

k

k k k

k

x

w

y x v

k
otherwise

x x

δ

δ

δ
δ

δ
+

 
 
 
 + 

 
 +  
  

 
= + 
 

≤ ≤
= 


+ 
 = + − 
 + 

 
+ 
 

1
1
1

k kd w
 

  +  
   

(2)

( ) ( )

[ ]

1

1

1

1
1 1 1 1

1

1

1

ˆˆ ˆ

ˆ ˆ

-

0.9305 0 0.1107
0.

ˆ

0077 0.9802 0.01

ˆ ˆ

ˆ ˆˆ ˆ

ˆ ˆ

ˆˆ

73
0.0142 0 0.8

ˆ

95

w
k k k k k

k k k k

d
k k k k k

k k k

k x k k

T T
k k k k k k

k GPF k x k

d
k k k k k

k

k k

x F x G w

y H x v

x F x G d

y H x

y H x Vd

J y y R y y d Wd

d K y H x

x F x G d

x
δ

δ

+

+

+

−
+ + + +

+

− +
+

+

= +

= +

= +

=

= +

= − − +

=

= +

+
= + −



 



k

1

3 0.1

1
1
1

1 0 0
0 1 0

0.1        50 100 
0                .

0.9305 0 0.1107
0.0077 0.9802 0.0173
0.0142 0 0.8953 0.1

0.5 0
0 0.5
0 0

k

k

k

k k k

k

k k k

k

x

w

y x v

k
otherwise

x x

δ

δ

δ
δ

δ
+

 
 
 
 + 

 
 +  
  

 
= + 
 

≤ ≤
= 


+ 
 = + − 
 + 

 
+ 
 

1
1
1

k kd w
 

  +  
   

where x∈Rnx, y∈Rny, and k denote the true state vector, the 
measurement vector and the time step, respectively. Fk, Gk

w, 
and Hk represent the system matrix, the noise distributer 
matrix and the measurement matrix, respectively. Also wk∈Rnx 
and vk∈Rny are the random process noise and measurement 
noise, respectively, with zero-mean and Gaussian white-noise 
distributed process. In order to develop the GPF, the state 
and output estimation of the system with Eq. (1) and (2) are 
assumed as follows:
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where xk∈Rnx and yk∈Rny denote the state and output estimation 
vector, respectively, dk∈Rnd is the model error vector, and 
Gk

d represents the model-error distributer matrix. Using Eq. 
(3) and (4), one step ahead of the system output will be as 
follows:
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where V=Hk+1Gk
d and Hx=Hk+1Fk. To achieve the optimal 

estimate of the model error, dk, the cost function is defined as:
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By minimizing the cost function with respect to dk, the optimal 
solution for the model error can be obtained at any time step:

(7)
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where  KGPF=(VT R-1 V+W)-1 VT R-1.
After obtaining the optimal model error, the GPF can be 
applied as a recursive filter in accordance with two steps: 
first, the optimal model error is computed from Eq. (7). 
Second, the estimated states are corrected using this model 
error through Eq. (3). 

3- Development of Generalized Predictive Kalman Filter
GPKF is a combination of KF and GPF. In the Kalman filter’s 
equations for the systems with equations (1), (2), if the time-
update equation of the priori estimated states, x-

k+1=Fk xk
+ 

(taken from [8]), is replaced by the following relationship, 
the generalized predictive Kalman filter is created:

(8)
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The model error vector dk is obtained for each time step 
during the optimization process through Eq. (7).

4- Simulation Results and Discussion
To evaluate the performance of the newly developed filters, 
numerical simulations are performed and new filters are 
compared with two well-known filters, Kalman filter (KF) 
and fading Kalman filter (FKF), in term of robust performance 
(see [8,10] for details of these filters). The states estimation 
of a stochastic system from the turbofan engine F404 is the 
subject of study. In this example, this system is subjected to 
temporary and intense uncertainties [9]:
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where δk is an uncertain model parameter as follows

(11)
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The system noise covariance Q and the measurement noise 
covariance R are equal to 0.05. The real initial state of the 
system is x0=[1 1 1]T, but in simulation these real states are 
unknown and it is assumed that they are x0=[3 3 3]T. To 
estimate the system states by GPF and GPKF, it is required to 
design an error. So, a two-dimensional error vector multiplied 
by a model-error distributer matrix with dimensions of 3×2 
is selected as the error term and is added to the propagation 
model:

(12)
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Also, the weight matrix W of GPF and GPKF is selected as 
0.3I2*2. With these assumptions, the state estimates of the 
system have been simulated using GPF, GPKF, KF and FKF 
and the simulation results have been shown in Figs. 1 and  
2. As depicted in these figures, the performance of the new 
predictive filters, is far better and far beyond than that of the 
Kalman filter and fading Kalman filter. In fact, although FKF 
estimates the states of the uncertain system more precisely 
than what KF does; however, its accuracy is very much lower 
than GPF’s and GPKF’s.

5- Conclusions
In this research, two new filters, state estimators, called 
the generalized predictive filter (GPF) and the generalized 
predictive Kalman filter (GPKF) were developed for 
discrete-time linear systems. The derivations of the GPF 
and GPKF are easier to understand than those of the existing 
predictive filters and applying them as a recursive filter is 
easily possible. Despite the simplicity of their structure, 
their robust performance against the model uncertainty is 

^ ^

^

^

^

Figure 1. The x1 state estimation error

Figure 2. The x2 state estimation error 
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superior to the Kalman filter and fading Kalman filter. This 
advantage of GPF and GPKF is due to the implementation of 
mechanisms that estimate and compensate the model error 
optimally and more effectively and is due to having the finite-
impulse-response structure as well. In fact, addition of this 
model compensation mechanism to Kalman filter makes this 
filter more accurate against the model uncertainty.

References
[1] J.L. Crassidis, F.L. Markley, Predictive Filtering for 

Nonlinear System, Journal of Guidance, Control, and 
Dynamics, AIAA, 20(3) (1997) 566–572.

[2] E.F. Camacho, C. Bordons,  Model Predictive Control, 
Springer-Verlag, London,1999.

[3] J.M., Maciejowski, , Predictive control with Constraints, 
Prentice-Hall,2002.

[4] J.L. Crassidis, F.L. Markley, Predictive Filtering for 
Attitude Estimation Without Rate Sensors, Journal of 
Guidance, Control, and Dynamics, AIAA, 20(3) (1997) 

522–527.
[5] Y. Lin, Z. Deng, Star-Sensor-Based Predictive Kalman 

Filter for Satellite Attitude Estimation, Sci. China (Series 
F), 45(3) (2002) 189–195.

[6] J. Fang, X. Gong,  Predictive Iterated Kalman Filter for 
INS/GPS Integration and Its Application to SAR Motion 
Compensation, IEEE Transactions on Instrumentation 
and Measurement, 59(4) (2010) 909–915.

[7] L. Zhang, S. Zhang, S. Qian,  Federated Nonlinear 
Predictive Filtering for invariant systems, IEEE 
Transactions on Automatic Control, 44(9) (2011) 1–6.

[8] D. Simon, optimal state estimation, John Wiley & Sons, 
Hoboken, New Jersey,2006.

[9] W.H. Kwon, S. Han, Receding Horizon Control, Springer-
Verlag, London, 2005.

[10] C. Thomas, ed., Sensor Fusion and its Applications, 
InTech, Shanghai, Chap. 4, 2010.

Please cite this article using:

M. Fathi, N. Ghahramani, M.A. Shahi Ashtiani, M. Fallah, A.  Mohammadi, Generalized Predictive Filter for Discrete-

Time Linear Systems, Amirkabir J. Mech. Eng., 49(4) (2018) 795-804.
DOI: 10.22060/mej.2016.724




